
November 2016 DocID027893 Rev 3 1/38

1

AN4701
Application note

Proprietary code read-out protection on microcontrollers
 of the STM32F4 Series

Introduction

Software providers are developing complex middleware solutions (Intellectual Propriety
code, or IP-Code), protecting them is an issue of high importance for microcontrollers.

In order to respond to this important requirement, STM32F4xx MCUs feature:

• Read Protection (RDP): protection against read operations

• Write Protection: protection against undesired write or erase operations

• Proprietary Code Read Out Protection (PCROP): protection against read and write
operations.

This application note provides a description of these Flash memory protection techniques,
focusing on the Proprietary Code Read Out Protection (PCROP) and providing a basic
example of PCROP protection.

The X-CUBE-PCROP firmware package delivered with this document contains the source
code of the PCROP example with all firmware modules required to run the example.

This application note has to be read in conjunction with reference manuals as listed in
Table 1. These documents, as well as the corresponding datasheets, are all available at
www.st.com.

Table 1. Reference documents

Product line Reference manual

STM32F401 RM0368

STM32F410 RM0401

STM32F411 RM0383

STM32F412 RM0402

STM32F413 RM0430

STM32F42x/STM32F43x RM0090

STM32F446 RM0390

STM32F469/479 RM0386

www.st.com

http://www.st.com

Contents AN4701

2/38 DocID027893 Rev 3

Contents

1 Read Out Protection (RDP) . 6

1.1 Read protection Level 0 . 6

1.2 Read protection Level 1 . 6

1.3 Read protection Level 2 . 6

1.4 Internal Flash memory content update on RDP protected
STM32F4xx microcontrollers . 7

2 Write protection . 8

3 Proprietary Code Read Out Protection (PCROP) 9

3.1 PCROP protection overview . 9

3.2 How to enable the PCROP protection . 9

3.3 How to disable the PCROP protection . 10

3.4 Placing and executing PCROP-ed IP-Code .11

3.4.1 Don’t PCROP vector table sector . 11

3.4.2 PCROP-ed IP-Code dependency . 11

3.5 PCROP feature availability on STM32F4 Series 12

4 PCROP example . 13

4.1 Example requirements . 13

4.1.1 Hardware requirements . 13

4.1.2 Software requirements . 13

4.2 Example overview . 13

4.2.1 Software settings . 15

4.3 PCROP-ed IP-Code: FIR low pass filter . 15

4.4 STEP1: ST Customer level n . 16

4.4.1 Generating an execute-only IP-Code . 16

4.4.2 Placing the IP-Code . 20

4.4.3 Placing constants outside of PCROP-ed sector 21

4.4.4 Protecting the IP-Code . 22

4.4.5 Step1-ST_Customer_level_n project flow . 23

4.4.6 Executing PCROP-ed IP-Code . 25

4.4.7 Creating header file and generating symbol definition file 26

DocID027893 Rev 3 3/38

AN4701 Contents

3

4.5 STEP2: ST Customer level n+1 . 29

4.5.1 Creating an end user project . 29

4.5.2 Including header file and adding symbol definition file 30

4.5.3 Calling PCROP-ed IP-Code functions . 32

4.5.4 Step2-ST_Customer_level_n+1 project flow . 32

4.5.5 Running the end user application . 33

4.5.6 PCROP protection in debug mode . 33

5 Conclusion . 36

6 Revision history . 37

List of tables AN4701

4/38 DocID027893 Rev 3

List of tables

Table 1. Reference documents. 1
Table 2. Flash memory content access vs. RDP level . 7
Table 3. Summary of PCROP availability on STM32F4 Series . 12
Table 4. Preprogrammed STM32F429ZIT internal Flash memory map . 29
Table 5. Document revision history . 37

DocID027893 Rev 3 5/38

AN4701 List of figures

5

List of figures

Figure 1. Flash memory map with PCROP-ed sectors . 9
Figure 2. PCROP versus Write protection . 10
Figure 3. PCROP-ed code calling a function located outside the PCROP-ed region 12
Figure 4. STM32F4 PCROP flow example . 14
Figure 5. Example of an ST Customer level n and level n+1. 14
Figure 6. FIR Lowpass Filter function block diagram. 15
Figure 7. Example of assembler code containing literal pools . 16
Figure 8. Accessing to FIR-Filter options. 17
Figure 9. Setting the Execute-Only code option . 18
Figure 10. Accessing to FIR-Filter options. 19
Figure 11. Setting option “No data reads in code memory” . 19
Figure 12. STM32F429ZIT internal Flash memory map . 20
Figure 13. Scatter file modification. 21
Figure 14. Enabling PCROP with STM32 STLink Utility . 23
Figure 15. Step1-ST_Customer_level_n project flow . 24
Figure 16. Generating symbol definition file with IAR . 27
Figure 17. Generating symbol definition file with Keil® . 28
Figure 18. Adding symbol definition file to Keil® project . 30
Figure 19. Setting symbol definition file type to Object file . 31
Figure 20. Adding symbol definition file to IAR project . 31
Figure 21. Step1-ST_Customer_level_n+1 project flow . 32
Figure 22. PCROP-ed IP-Code Assembly reading . 34
Figure 23. Filling PCROP-ed sector starting address . 34
Figure 24. PCROP-ed IP-Code Assembly reading . 35

Read Out Protection (RDP) AN4701

6/38 DocID027893 Rev 3

1 Read Out Protection (RDP)

The Read Out Protection is a global Flash memory read protection allowing the embedded
firmware code to be protected against copy, reverse engineering, dumping using debug
tools or other means of intrusive attack. This protection should be set by the user after the
binary code is loaded to the embedded Flash memory.

1.1 Read protection Level 0

Level 0 is the default one, Flash memory is fully open and all memory operations are
possible in all boot configurations (Debug features, Boot from RAM, from System memory
bootloader or from Flash memory). In this mode there is no protection (it is mainly intended
for development and debug).

1.2 Read protection Level 1

When the read protection level 1 is activated, no access (read, erase, and program) to Flash
memory or backup SRAM can be performed via debug features such as Serial Wire or
JTAG, even while booting from SRAM or system memory bootloader.

However, when booting from Flash memory, accesses to this memory and to backup SRAM
from user code are allowed.

Any read request to the protected Flash memory generates a bus error.

Disabling RDP level 1 protection by re-programming RDP option byte to level 0 leads to a
mass erase.

1.3 Read protection Level 2

When RDP level 2 is activated, all protections provided in Level1 are active and the chip is
fully protected. The RDP option byte and all other option bytes are frozen and can no longer
be modified. The JTAG, SWV (single-wire viewer), ETM, and boundary scan are disabled.

When booting from Flash memory, the memory content is accessible to user code.
However, booting from SRAM or from system memory bootloader is no more possible.

This protection is irreversible (JTAG fuse), so it’s impossible to go back to protection levels 1
or 0.

Table 2 describes different accesses to Flash memory, Backup SRAM, Option bytes and
One Time Programmable bytes (OTP) when booting from internal Flash memory, or in
Debug or boot from SRAM or system memory bootloader.

DocID027893 Rev 3 7/38

AN4701 Read Out Protection (RDP)

37

1.4 Internal Flash memory content update on RDP protected
STM32F4xx microcontrollers

When RDP protection is activated (level 1 or level 2), internal Flash memory content cannot
be updated through Debug or when booting from SRAM or system memory bootloader.

So an important requirement for the End product is the ability to upgrade embedded
firmware in the internal flash with new firmware versions, adding new features and
correcting potential issues.

This requirement can be resolved by implementing user-specific firmware to perform
In-Application Programming (IAP) of the internal Flash memory by using a communication
protocol such as USART for the reprogramming process.

For more details about IAP refer to the application note AN3965, available at www.st.com.

Table 2. Flash memory content access vs. RDP level

Memory area
Protection

level

Debug, boot from RAM or from
system memory bootloader

Booting from Flash memory
(User code)

Read Write Erase Read Write Erase

Main memory
and BKP

Level 1 No No(1)

1. Erased only when RDP changes from Level 1 to Level 0. The OTP area remains unchanged.

Yes

Level 2 No Yes

Option bytes
Level 1 Yes Yes

Level 2 No No

OTP
Level 1 No NA(2)

2. NA = Not Available.

Yes NA(2)

Level 2 No NA(2) Yes NA(2)

Write protection AN4701

8/38 DocID027893 Rev 3

2 Write protection

The write protection is used to protect the content of specified sectors against code update
or erase. This protection can be applied by sector.

Any write request generates a Write Protection Error. The WRPERR flag is set by hardware
when an address to be erased/programmed belongs to a write-protected part of the Flash
memory.

For example the mass erase of a Flash memory where at least one sector is write protected
is not possible and the WRPERR flag is set.

Flash memory sectors can be either in Write protection or Read & Write (PCROP) protection
mode, depending on the Selection of protection mode (SPRMOD option bit) of nWPRi
option bits. To activate the write protection (SPRMOD = 0) for each Flash memory sector i,
one option bit (nWRPi) is used. When the Write protection is set for sector i (option bit
nWRPi = 0), this sector cannot be erased or programmed.

Enabling or disabling write protection can be managed either by embedded user code or by
using STM32 ST-Link Utility software and debug interfaces.

DocID027893 Rev 3 9/38

AN4701 Proprietary Code Read Out Protection (PCROP)

37

3 Proprietary Code Read Out Protection (PCROP)

3.1 PCROP protection overview

The PCROP is a read and write protection of an IP-Code in Flash memory applied by sector
to protect proprietary code from possible modifications or read out by the end user code,
debugger tools or RAM Trojan codes.

Any read or write request generates a Read or Write Protection Error:

• The WRPERR flag is set by hardware when an address to be erased/programmed
belongs the PCROP-ed part of the Flash memory.

• The RDERR flag is set when a read access through the D-bus is performed to a
PCROP-ed sector.

• A Flash memory operation error interrupt is generated and OPERR flag is set in
FLASH_SR register when a read or write request from PCROP-ed sectors is detected
and cannot be run. This is valid only when ERRIE bit is set in the FLASH_CR register.

The protected IP-Code can be easily called by the end user application and still be
protected against direct access to the IP-Code itself. PCROP does not prevent protected
codes from being executed.

Figure 1. Flash memory map with PCROP-ed sectors

3.2 How to enable the PCROP protection

To activate the PCROP, the SPRMOD option bit must be activated, this changes the
function of the nWRP option bits. The PCROP sector is selected by using the same option
bytes as the write protection, but with SPRMOD option bit active. Each sector can be

Proprietary Code Read Out Protection (PCROP) AN4701

10/38 DocID027893 Rev 3

independently PCROP-ed, and protecting additional sectors is possible (when RDP is set to
level 0 or 1) without full chip erase unlike disabling PCROP protection.

Some precautions should be taken when activating the PCROP feature. The active values
of nWRPi bits are inverted when PCROP mode is active, so if SPRMOD = 1 and nWRPi = 1,
then the user Sector i is PCROP-ed.

To correctly activate PCROP on Sector i, the sequence detailed below must be followed:

1. Clear all nWRP bits except those for already PCROP-ed sectors (for STM32F4
products with two Flash memory banks such as STM32F429ZIT, bank2 nWRP bits
must be cleared too);

2. Set nWRPi bit for Sector i to be PCROP-ed;

3. Enable PCROP Protection mode by setting SPRMOD bit

For more details on PCROP enabling implementation, refer to the PCROP_Enable()
function described in the provided FW package (Step1-ST_Customer_level_n project
main.c file).

It’s important to note that it is not possible to have at the same time one write protected
sector and another PCROP-ed sector. So user can have either write protection mode and
sectors could be write protected, or PCROP mode and sectors could be PCROP-ed.
Figure 2 shows the difference between PCROP and write protection.

Figure 2. PCROP versus Write protection

3.3 How to disable the PCROP protection

Depending on the RDP level, PCROP can be disabled if RDP level is 1 or 0 but when RDP
is set to level 2 PCROP can no more be disabled. When the RDP is set to Level 2, all the
option bytes are frozen and cannot be modified. As a result, PCROP-ed sectors can never
be erased or modified, so the protection becomes permanent.

DocID027893 Rev 3 11/38

AN4701 Proprietary Code Read Out Protection (PCROP)

37

The only way to disable PCROP on a protected sector is by changing RDP level from 1 to 0
and at the same time clearing the SPRMOD bit.

During application development user may need to disable PCROP or global RDP protection
without spending time in developing and disabling protection functions. STM32 ST-LINK
Utility tool can be a very simple way for disabling or enabling protection using debug
interfaces as JTAG or SWD without the need for developing dedicated functions.

For more details on how to use STM32 ST-LINK Utility software user should refer to user
manual UM0892, available at www.st.com.

Note: Disabling PCROP or/and Global RDP protection leads to a full chip erase.

3.4 Placing and executing PCROP-ed IP-Code

As previously mentioned, PCROP does not prevent protected IP-Code from being executed
and its functions can be easily called by user code.

PCROP-ed sectors are protected against D-Code bus read accesses, so it’s important to
mention here that only code execution is allowed (Instruction fetch through I-Code bus)
while data reading is forbidden. Therefore the protected IP-Code will be unable to access
the associated data values stored in the same area (such as literal pools, branch tables or
constants which are fetched from Flash memory through the D-Code bus during the
execution).

PCROP-ed code must be an execute-only code and must not contain any data.

User must configure the compiler to generate an execute-only IP-Code avoiding any data
read, the necessary compiler configurations are detailed in Section 4.

3.4.1 Don’t PCROP vector table sector

The Interrupt vector table contains entry point addresses of each interrupt handler, that are
read by CPU through D-code bus. In general Interrupt vector table is located in the first
sector at the first address 0x08000000 (except in some cases where it’s relocated in other
regions, such as SRAM).

When placing code to be protected in the Flash memory, the following rules must be
respected:

• the first Flash memory sector where vector table is located must not be PCROP-ed

• the code to be PCROP-ed must not be placed in the first sector.

3.4.2 PCROP-ed IP-Code dependency

Protected IP-Code can call functions from libraries located in user code region and outside
of PCROP-ed area. In this case the IP-Code contains the related functions addresses
allowing PC (Program Counter) to jump to these functions when executing IP-Code. These
addresses are unchangeable once the IP-Code is PCROP-ed. Consequently each called
function must be located (outside of PCROP-ed region) at its corresponding fix address
written in the PCROP-ed IP-Code else, PC jumps to an invalid address and IP-Code will not
work correctly.

To be fully independent, protected IP-Code has to be placed together with all its related
functions.

Proprietary Code Read Out Protection (PCROP) AN4701

12/38 DocID027893 Rev 3

Figure 3 shows an example where PCROP-ed Function_A() is calling a Function_B()
located at a fixed address outside the PCROP-ed region.

Figure 3. PCROP-ed code calling a function located outside the PCROP-ed region

3.5 PCROP feature availability on STM32F4 Series

Table 3 provides a summary of PCROP protection availability, Flash memory sizes and
number of sectors on STM32F4 microcontrollers.

Table 3. Summary of PCROP availability on STM32F4 Series

Product lines Flash memory (bytes) Number of sectors PCROP availability

STM32F401 Up to 512 K Up to 8 Yes

STM32F405/415 Up to 1 M Up to 12 No

STM32F407/417 Up to 1 M Up to 12 No

STM32F411 Up to 512 K Up to 8 Yes

STM32F427/437 Up to 2 M Up to 24 Yes

STM32F429/439 Up to 2 M Up to 24 Yes

STM32F446 Up to 512 K Up to 8 Yes

STM32F469/479 Up to 2 M Up to 24 Yes

DocID027893 Rev 3 13/38

AN4701 PCROP example

37

4 PCROP example

The firmware example provided with this application note illustrates a use case of PCROP
protection. All steps required to develop this firmware are detailed in this section.

4.1 Example requirements

4.1.1 Hardware requirements

The hardware required to run this example is the following:

• an STM32F429I-DISCOVERY board with embedded STM32F429ZIT MCU

• a mini-USB cable to power the board and to connect the discovery embedded STLINK
for debugging and programming.

4.1.2 Software requirements

The following software tools are required:

• IAR Embedded Workbench® or Keil® µvision IDE

• STM32 STLink Utility is required mainly for enabling or disabling PCROP protection.

4.2 Example overview

This example describes a use case where an ST Customer Level n provides
preprogrammed STM32F429ZIT MCUs with a critical IP-Code to an ST Customer level n+1.

The IP-Code has to be protected by activating PCROP allowing ST Customer level n+1 to
use its functions (without the ability to read or modify it) to program the end user application.

ST Customer level n should then provide, together with a preloaded STM32 MCU, the
following inputs:

• Flash memory map defining the exact PCROP-ed IP-Code location and the available
sectors for programming

• header file that has to be included in ST Customer level n+1 project containing IP-Code
functions definition to be called in End Used Code

• symbol definition file containing PCROP-ed IP-Code function symbols.

The described use case is schematically shown in Figure 4.

PCROP example AN4701

14/38 DocID027893 Rev 3

Figure 4. STM32F4 PCROP flow example

An OEM (Original Equipment Manufacturer) can be the ST Customer level n using
STM32F4 microcontrollers. Then the OEM provides preprogrammed MCUs to the ST
Customer level n+1 that could be the END CUSTOMER who makes the end user product,
as illustrated in Figure 5.

Figure 5. Example of an ST Customer level n and level n+1

DocID027893 Rev 3 15/38

AN4701 PCROP example

37

4.2.1 Software settings

This application note is provided with two projects:

• Project 1: STEP1-ST_Customer_level_ n

This project shows an example of how an ST Customer level n can place, protect and
execute its IP-Code and how to generate IP-Code related files as header and symbol
definition files to be provided to ST customer level n+1.

This project includes two different project configurations:

– PCROP-IP-Code-XO: in this configuration the compiler is configured to generate
an execute-only IP-Code avoiding any data read from it.

– PCROP-IP-Code: in this configuration the IP-Code is compiled without avoiding
data (literal pools) generation. This configuration is dedicated to testing purposes
in order to show that PCROP-ed IP-Code must be an execute-only code.

• Project 2: STEP2-ST_Customer_level_n+1

This project shows an example of how an ST Customer level n+1 having a
preprogrammed STM32F429ZIT with a PCROP-ed IP-Code, can create its own end
user application using these protected IP-Code functions.

4.3 PCROP-ed IP-Code: FIR low pass filter

As example of IP-Code to be protected a FIR low pass filter algorithm from CMSIS-DSP will
be described, focusing on how to protect and call this IP-Code function, without providing
details on the functions themselves.

The FIR low pass filter removes high frequency signal components from the input.

The input signal is a sum of two sine waves having frequencies of 1 KHz and 15 KHz. The
low pass filter (with its pre-configured cutoff frequency set at 6 KHz) eliminates the 15 KHz
signal, leaving the 1 KHz sine wave at the output.

Figure 6 shows the FIR low pass filter block diagram.

Figure 6. FIR Lowpass Filter function block diagram

Used CMSIS DSP Software Library Functions:

• arm_fir_init_f32(): initialization function to configure the filter, described in
arm_fir_init_f32.c file;

• arm_fir_f32(): the elementary function representing the FIR Filter, described in
arm_fir_f32.c file.

PCROP example AN4701

16/38 DocID027893 Rev 3

The following function was created using the CMSIS DSP functions described above:

• FIR_lowpass_filter(): the global function representing the FIR Filter, described in
fir_filter.c file.

The FPU and DSP embedded in STM32F4 microcontrollers are used for signal processing
and floating point calculation to output the correct signal.

For more details on FIR functions users should refer to CMSIS documentation in
“Drivers/CMSIS/Documentation/DSP” directory included in the associated software
package.

4.4 STEP1: ST Customer level n

At this stage the ST Customer level n will:

• generate an execute-only IP-Code;

• place the IP-Code in Sector 2 of internal Flash memory;

• protect the IP-Code placed in Sector 2;

• execute the IP-Code by calling its functions in main code;

• create header file and generate symbol definition file to be used in
STEP2-ST_Customer_level_n+1 project.

4.4.1 Generating an execute-only IP-Code

Each toolchain has its own options to prevent compiler from generating literal pools and
branch tables. For instance Keil® has the Execute-only Code option while IAR has the
No data reads in code memory option.

Figure 7 shows an assembler code containing literal pools, where the instruction has the
form of VLDR <variable>, [PC + <offset>].

Figure 7. Example of assembler code containing literal pools

DocID027893 Rev 3 17/38

AN4701 PCROP example

37

Keil®: Using Execute-Only command

For Keil® the command --execute_only must be used to generate a code without literal
pools and branch tables preventing the compiler from generating any data accesses to code
sections.

The --execute_only command must be used for any PCROP-ed code.

To set this command right click on the group file or the IP-Code and choose Options for
Group ‘FIR-Filter’, as indicated in Figure 8.

Figure 8. Accessing to FIR-Filter options

PCROP example AN4701

18/38 DocID027893 Rev 3

In the following window (see Figure 9) check the option Execute-only Code, then the
–execute_only command is added in compiler control string field.

Figure 9. Setting the Execute-Only code option

Then in the scatter file replace the option read only +RO by execute-only +XO.

Updating Keil® scatter file

The scatter file has to be updated in order to set IP-Code files as execute-only code as
shown below

LR_PCROP 0x08008000 0x00004000 {

 ER_PCROP 0x08008000 0x00004000 { ; load address = execution address

 arm_fir_f32.o (+XO)

arm_fir_init_f32.o (+XO)

FIR_Filter.o (+XO)

}

}

IAR: No data reads in code memory

For IAR the option “No data reads in code memory” must be used to prevent the compiler
from generating any data accesses to code sections. To activate this option, right click on
the file group ‘FIR-Filter’ containing IP-Code source files then (see Figure 10) select
Options.

DocID027893 Rev 3 19/38

AN4701 PCROP example

37

Figure 10. Accessing to FIR-Filter options

Then, in the following window check the option “No data reads in code memory”, as
indicated in Figure 11.

Figure 11. Setting option “No data reads in code memory”

PCROP example AN4701

20/38 DocID027893 Rev 3

4.4.2 Placing the IP-Code

As previously mentioned, PCROP-ed code must not be in the first sector where interrupt
vector table is located. That’s why we will place the IP-Code in Sector 2 BANK1 of the
internal Flash memory, while the user code and the vector table are placed starting from the
first sector, as indicated in Figure 12.

Figure 12. STM32F429ZIT internal Flash memory map

Keil® scatter file

To place IP-Code in Sector 2 follow the sequence below:

Go to Project → Options for Target, select the Linker tab then uncheck Use Memory Layout
from Target Dialog as shown in Figure 13, then click on Edit button to modify the
PCROP-w-XO.sct scatter file.

The scatter file is then opened. IP-Code object files should be placed in a new dedicated
load region named LR_PCROP as shown below:

LR_PCROP 0x08008000 0x000040000 { ; IP Code dedicated load region

 ER_PCROP 0x080080000 0x00004000 {

 arm_fir_f32.o (+XO)

arm_fir_init_f32.o (+XO)

FIR_Filter.o (+XO)

DocID027893 Rev 3 21/38

AN4701 PCROP example

37

}

}

Figure 13. Scatter file modification

IAR ICF file

To place IP-Code in Sector 2 with IAR, open ICF file and add a new load region as shown
below:

define symbol __ICFEDIT_region_PCROP_start__ = 0x08008000;
define symbol __ICFEDIT_region_PCROP_end__ = 0x0800BFFF;

define region PCROP_region = mem:[from __ICFEDIT_region_PCROP_start__ to
__ICFEDIT_region_PCROP_end__];

place in PCROP_region { ro object arm_fir_f32.o,
 ro object arm_fir_init_f32.o,
 ro object FIR_Filter.o};

4.4.3 Placing constants outside of PCROP-ed sector

All IP-Code constants (e.g. integer, float or strings) have to be placed outside of PCROP-ed
region as they cannot be accessed by the D-Code bus.

Linker file can be used to place constants in a specified memory region as shown in the
following example.

PCROP example AN4701

22/38 DocID027893 Rev 3

Example: IAR ICF file:

define symbol __ICFEDIT_region_CONST_start__ = 0x0800C000;

define symbol __ICFEDIT_region_CONST_end__ = 0x0800FFFF;

define region CONST_region = mem:[from __ICFEDIT_region_CONST_start__
to __ICFEDIT_region_CONST_end__];

place in CONST_region {section .rodata};

Another way is placing constants at a fixed address directly in user code when defining the
const using the @ operator for IAR and __attribute__((at(address))) for Keil®. This approach
has been used in this example and constants definition were done in fir_filter.c file which is
similar to the following example.

Placing constants at fixed address with Keil®

const int k __attribute__((at(0x0800C000))) = 500; /* place const k in flash
at 0x0800C000 */

Placing constants at fixed address with IAR

const int k @ 0x0800C000 = 500; /* place const k in flash at 0x0800C000 */

Caution: When placing IP-Code constants, user should take in account that these constants can be
deleted or modified by ST Customer level n + 1, consequently the IP-Code functions will be
useless. It’s then recommended to place these constants in a dedicated sector where no
user code will be programmed. Then this memory region should be highlighted in the Flash
memory map provided to ST Customer level n+1.

4.4.4 Protecting the IP-Code

Activating PCROP using PCROP_Enable() function

Protecting the IP-Code is done by activating PCROP on Sector 2 using PCROP_Enable()
function defined in the Step1-ST_Customer_level_n project main.c file.

Ones this function is executed at least one time, Sector 2 becomes Read/Write protected
and any IP-Code modification requires disabling PCROP then full Flash memory content will
be erased.

Activating PCROP using STM32 STLink Utility

To activate PCROP on Sector 2 using STM32 STLink Utility user must follow the sequence
shown below:

• Power on the board, then In the STLink Utility interface go to Target → Option bytes.

• In the following window set Flash memory protection mode to Read/Write protection
and enable protection on Sector 2, as shown in Figure 14, then click on Apply button.

DocID027893 Rev 3 23/38

AN4701 PCROP example

37

Figure 14. Enabling PCROP with STM32 STLink Utility

4.4.5 Step1-ST_Customer_level_n project flow

Figure 15 illustrates the Step1-ST_Customer_level_n project flow with both project
configurations:

• PCROP-IP-Code-XO (in red): PCROP-ed IP-Code didn't contain any literal pool, then
FIR-Filter algorithm run successfully noting that a Read Operation Error Interrupt is
generated and system reset is initiated if any read/write request occurs from/to
PCROP-ed region.

• PCROP-IP-Code (in blue): IP-Code containing literal pools, when starting PCROP-ed
IP-Code execution, a Read Operation Error Interrupt is generated, then system reset
initiated and system restarted.

PCROP example AN4701

24/38 DocID027893 Rev 3

Figure 15. Step1-ST_Customer_level_n project flow

DocID027893 Rev 3 25/38

AN4701 PCROP example

37

4.4.6 Executing PCROP-ed IP-Code

Once IP-Code has been programmed on Sector 2 and protected, it has to be tested by
calling its functions in user code.

In this section we will show how to execute the PCROP-ed IP-Code in the
Step1-ST_Customer_level_n project with both configurations, noting that the
PCROP-IP-Code configuration is only for testing purposes and must not be used for
STEP2. The PCROP-IP-Code-XO is the right configuration where the compiler is set to
generate an execute-only IP-Code. This is the configuration to use to run the
Step2-ST_Customer_level_n+1 project.

PCROP-IP-Code-XO (must be used before STEP2)

The compiler is configured to generate an execute-only IP-Code avoiding any data read
from it (avoiding literal pools).

1. Open project located in Step1-ST_Customer_level_n directory and choose your
preferred toolchain

2. Select PCROP-IP-Code-XO configuration

3. Rebuild all files.

4. Run the example following the sequence below:

a) Power on the board and before loading the code, check if there is any PCROP-ed
or write protected sector. If yes disable the protection using STM32 STLink Utility
then load the code. Once program has been loaded, red LED should toggle
continuously;

b) press the user button key to activate PCROP protection, once done green LED is
ON and Sector 2 is PCROP-ed, else red Led is ON and PCROP activation failed;

c) press the user button key to execute the PCROP-ed IP-Code called in main.c file,
the green LED should toggle continuously.

PCROP-IP-Code (for test only and must not be used for STEP2)

No special compiler option used, just for testing purposes to show that avoiding data in code
(as literal pools and branch tables) is mandatory for PCROP-ed codes.

1. In the same project located in Step1-ST_Customer_level_n directory select PCROP-
IP-Code configuration

2. Rebuild all files.

3. Run the example following the sequence below:

a) Power on the board and before loading the code, check if there is any PCROP-ed
or write protected sector. If yes disable the protection using STM32 STLink Utility,
then load the code; Once program has been loaded, red LED should toggle
continuously;

b) press the user button key to activate PCROP protection, once done green LED is
ON and Sector 2 is PCROP-ed, else red LED is ON and PCROP activation failed;

c) press the user button key to execute the PCROP-ed IP-Code called in main.c file,
an Error Operation Interrupt is generated, system Reset is initiated and the red
LED toggles continuously.

PCROP example AN4701

26/38 DocID027893 Rev 3

Interpretation

The low pass filter function computes the testInput_f32_1kHz_15kHz input signal and
should output a 1 KHz sine wave. The output data testOutput is then compared to the
reference refOutput already calculated with MATLAB, if it matches, the green LED toggles
continuously, else the red LED toggles continuously.

For the PCROP-IP-Code configuration where PCROP-ed IP-Code contains literal pools:
when executing IP-Code (FIR_lowpass_filter() function), literal pools could not be accessed
through D-Code bus then the RDERR flag is set. OPERR flag is set as well and a read
operation error interrupt is generated, then a system reset is initiated in
HAL_FLASH_OperationErrorCallback() function and red LED toggles continuously.

However for the PCROP-IP-Code-XO configuration the IP-Code is executed correctly and
green LED should toggle continuously.

Note: For more details, refer to the readme.txt inside the firmware package.

4.4.7 Creating header file and generating symbol definition file

The header file to be provided to ST Customer level n+1 contains the definitions of IP-Code
functions to be used. In this example it’s the fir_filter.h file included in the main.c file.

Generating symbol definition file with IAR

In the IDE, to export PCROP-ed IP-Code symbols, choose Project→Options→Build Actions
and specify the following command line in the Post-build command line text field:

$TOOLKIT_DIR$\bin\isymexport.exe --edit "$PROJ_DIR$\steering_file.txt"
"$TARGET_PATH$" "$PROJ_DIR$\fir_filter.o"

where steering_file.txt is created to be used as option to keep only IP-Code function
symbols in the symbol file to be generated.

To keep only IP-Code functions in symbol file the steering_file.txt has to be created as
shown below:

show arm_fir_f32

show arm_fir_init_f32

show FIR_lowpass_filter

where “show” command is used to keep the preferred functions in the symbol definition file
to be generated.

The generated symbol definition file fir_filter.o will be used by adding it to
STEP2-ST_Customer_level_n+1 IAR project.

DocID027893 Rev 3 27/38

AN4701 PCROP example

37

Figure 16. Generating symbol definition file with IAR

Generating symbol definition file with Keil®

To generate the symbol definition file with Keil® go to Project options in the Linker tab add
the command --symdefs=fir_filter.txt and rebuild the project.

PCROP example AN4701

28/38 DocID027893 Rev 3

Figure 17. Generating symbol definition file with Keil®

The symbol definition file named fir_filter.txt is then created in
Step1-ST_Customer_level_n\MDK-ARM\PCROP-IP-Code-XO directory.

The file contains all symbols of the project, so only those of the IP-Code functions to be
called by the end user should be kept. All other ones should be removed, the resulting
symbol definition file will then be

Symbol definition file fir_filter.txt:

#<SYMDEFS># ARM Linker, 5050106: Last Updated: Sat May 16 20:25:52 2015

0x08008001 T FIR_lowpass_filter

0x0800804d T arm_fir_f32

0x08008483 T arm_fir_init_f32

DocID027893 Rev 3 29/38

AN4701 PCROP example

37

4.5 STEP2: ST Customer level n+1

ST Customer level n+1 have the preloaded STM32F429ZIT MCUs with the PCROP-ed
IP-Code and the provided symbol definition file and the header file from ST Customer level
n.

Then referring to the Flash memory map provided by the ST Customer level n, ST Customer
level n+1 should:

• create end project;

• include header file and add symbol definition file provided by ST Customer level n to its
project;

• call PCROP-ed IP-Code functions;

• execute and debug the end user application.

Caution: The ST Customer level n+1 must use exactly the same toolchain and compiler version used
by ST Customer level n to develop and program the IP-Code, else ST Customer level n+1
could never use the IP-Code.
As in the provided example, user must use the same toolchain and compiler version for both
projects STEP1-ST_Customer_level_n and STEP2-ST_Customer_level_n+1.
For example if the MDK-ARM toolchain V5.14 is used to run STEP1-ST_Customer_level_n
project, then it has to be used to run STEP2-ST_Customer_level_n+1 project as well.

4.5.1 Creating an end user project

ST Customer level n+1 will place its code based on Flash memory map described in
Table 4.

Sector 2 (gray line) is unavailable as it is PCROP-ed while Sector 3 (light yellow line)
shouldn’t be used as it contains IP-Code constants. So user must take care when
implementing linker file to avoid placing any code at these regions.

Table 4. Preprogrammed STM32F429ZIT internal Flash memory map

Sector number Sector size Start address Content

Sector 0 16 KBytes 0x08000000
Available

Sector 1 16 KBytes 0x08004000

Sector 2 16 KBytes 0x08008000
PCROP-ed

IP-Code

Sector 3 16 KBytes 0x0800C000 IP-Code constants

Sector 4
...
...

Sector 11

16 KBytes
...
...

128 KBytes

0x08000800
...
...

0x080E0000

Available
Sector 12 16 KBytes 0x08100000

...

...
...
...

...

...

Sector 22 128 KBytes 0x081C0000

Sector 23 128 KBytes 0x081E0000

PCROP example AN4701

30/38 DocID027893 Rev 3

PCROP-ed IP-Code functions are then used to create end user application. The project
located in Step2-ST_Customer_level_n+1 directory is an example where PCROP-ed FIR
Filter functions are called in main.c file.

4.5.2 Including header file and adding symbol definition file

The symbol definition file provided from ST Customer level n should be added as a classic
source file which is necessary to link PCROP-ed IP-Code in the
Step2-ST_Customer_level_n+1 project.

Adding symbol definition file in Keil® project

The symbol definition file provided from ST Customer level n described in Section 4.4.7 and
named fir_filter.txt in this example must be added to FIR-Filter group as described in
Figure 18.

Figure 18. Adding symbol definition file to Keil® project

The added fir_filter.txt file type has to be changed to Object file instead of text document file,
as indicated in Figure 19.

DocID027893 Rev 3 31/38

AN4701 PCROP example

37

Figure 19. Setting symbol definition file type to Object file

Adding symbol definition file in IAR project

The fir_filter.o file must be added as an object file to the group FIR_Filter as shown in
Figure 20.

Figure 20. Adding symbol definition file to IAR project

Including header file

The header file fir_filter.h is included in main.c file then user can call FIR Filter functions.

PCROP example AN4701

32/38 DocID027893 Rev 3

4.5.3 Calling PCROP-ed IP-Code functions

Once fir_filter.h header file is included in main.c file and symbol definition file added to
project, PCROP-ed IP-Code functions can be called.

The FIR_lowpass_filter() function (described in fir_filter.c file) is called in the main file as
shown below:

FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES)

where:

• inputF32: is the pointer to the table containing input signal data;

• outputF32: is the pointer to the table to be filled with processed output signal data;

• TEST_LENGTH_SAMPLES: is the number of samples in the input to be processed.

4.5.4 Step2-ST_Customer_level_n+1 project flow

Figure 21 illustrates the Step2-ST_Customer_level_n+1 project flow. If any read/write
operation request from/to PCROP-ed IP-Code occurs, a Read Operation Error Interrupt is
generated, a system reset is initiated then system restarts and red LED toggles
continuously.

Figure 21. Step1-ST_Customer_level_n+1 project flow

DocID027893 Rev 3 33/38

AN4701 PCROP example

37

4.5.5 Running the end user application

At this stage the IP-Code must be already preloaded and PCROPed in the STM32F429ZIT
MCU, so Step1-ST_Customer_level_n project (PCROP-IP-Code-XO configuration) must be
loaded and executed before running the project.

To make the program work, follow the steps described below:

1. Open project located in Step2-ST_Customer_level_n+1 directory and choose the same
toolchain used in STEP1.

2. Rebuild all files.

3. Run the example following the sequence below

a) Power on the board and load the code (here only user code is loaded)

b) Press the user button key to execute the PCROP-ed IP-Code called in main.c file,
the green LED should toggle continuously.

Note: For more details, refer to the readme.txt inside the firmware package.

4.5.6 PCROP protection in debug mode

When developing its end user application, ST Customer level n+1 needs to debug its code.
Therefore, when debugging the end user application, PCROP protection should prevent any
read access to the IP-Code developed by ST Customer level n.

In this section we will show how the PCROP protects the preprogrammed IP-Code against
reading when debugging user code.

The debugging example described below is done on Keil® project.

Debugging the end user application

Before debugging end user project, Step1-ST_Customer_level_n project
(PCROP-IP-Code-XO workspace) must be loaded and executed in order to get
STM32F429ZIT with preprogrammed and PCROP-ed IP-Code.

To debug Step2-ST_Customer_level_n+1 project, follow the steps described below:

1. Open project located in Step2-ST_Customer_level_n+1 directory and choose the same
toolchain used in STEP1.

2. Rebuild all files.

3. Click on Start/Stop Debug session to start debug.

4. Run the program by clicking on Run, red LED should toggle continuously.

5. Press User button to execute IP-Code, the green LED should toggle continuously.

6. To access to the PCROP-ed IP-Code, right click on the Disassembly window then
select Show Disassembly at Address as shown in Figure 22.

PCROP example AN4701

34/38 DocID027893 Rev 3

Figure 22. PCROP-ed IP-Code Assembly reading

7. Fill in the address field the PCROP-ed sector starting address and click on Go To
button as shown in Figure 23.

Figure 23. Filling PCROP-ed sector starting address

As shown in Figure 24, the PCROP-ed IP-Code loaded in Sector 2 is unreadable while code
located just before 0x08008000 address can be read. Reading PCROP-ed sector sets
RDERR and OPERR flags in FLASH_SR register.

A Flash operation error interrupt is generated due to Flash memory read operation request
through D-Code bus when debugging.

Then a software Reset is initiated in the HAL_FLASH_OperationErrorCallback() function
(described in main.c file) and Red LED4 toggles continuously.

DocID027893 Rev 3 35/38

AN4701 PCROP example

37

Figure 24. PCROP-ed IP-Code Assembly reading

Conclusion AN4701

36/38 DocID027893 Rev 3

5 Conclusion

Microcontrollers of the STM32F4 Series provide very flexible and useful Read and/or Write
protection features that can be used in applications where protection is required.

This application note shows how Read, Write and PCROP protection features provided on
STM32F4xx MCUs can be used.

DocID027893 Rev 3 37/38

AN4701 Revision history

37

6 Revision history

Table 5. Document revision history

Date Revision Changes

28-Jul-2015 1 Initial release.

12-Oct-2015 2
Added STM32F469/479 products, hence updated Introduction.

Updated Keil® scatter file and Debugging the end user application.

29-Nov-2016 3
Added STM32F410, STM32F412 and STM32F413 products, hence
updated Introduction and added Table 1: Reference documents.

AN4701

38/38 DocID027893 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	Table 1. Reference documents
	1 Read Out Protection (RDP)
	1.1 Read protection Level 0
	1.2 Read protection Level 1
	1.3 Read protection Level 2
	Table 2. Flash memory content access vs. RDP level

	1.4 Internal Flash memory content update on RDP protected STM32F4xx microcontrollers

	2 Write protection
	3 Proprietary Code Read Out Protection (PCROP)
	3.1 PCROP protection overview
	Figure 1. Flash memory map with PCROP-ed sectors

	3.2 How to enable the PCROP protection
	Figure 2. PCROP versus Write protection

	3.3 How to disable the PCROP protection
	3.4 Placing and executing PCROP-ed IP-Code
	3.4.1 Don’t PCROP vector table sector
	3.4.2 PCROP-ed IP-Code dependency
	Figure 3. PCROP-ed code calling a function located outside the PCROP-ed region

	3.5 PCROP feature availability on STM32F4 Series
	Table 3. Summary of PCROP availability on STM32F4 Series

	4 PCROP example
	4.1 Example requirements
	4.1.1 Hardware requirements
	4.1.2 Software requirements

	4.2 Example overview
	Figure 4. STM32F4 PCROP flow example
	Figure 5. Example of an ST Customer level n and level n+1
	4.2.1 Software settings

	4.3 PCROP-ed IP-Code: FIR low pass filter
	Figure 6. FIR Lowpass Filter function block diagram

	4.4 STEP1: ST Customer level n
	4.4.1 Generating an execute-only IP-Code
	Figure 7. Example of assembler code containing literal pools
	Figure 8. Accessing to FIR-Filter options
	Figure 9. Setting the Execute-Only code option
	Figure 10. Accessing to FIR-Filter options
	Figure 11. Setting option “No data reads in code memory”

	4.4.2 Placing the IP-Code
	Figure 12. STM32F429ZIT internal Flash memory map
	Figure 13. Scatter file modification

	4.4.3 Placing constants outside of PCROP-ed sector
	4.4.4 Protecting the IP-Code
	Figure 14. Enabling PCROP with STM32 STLink Utility

	4.4.5 Step1-ST_Customer_level_n project flow
	Figure 15. Step1-ST_Customer_level_n project flow

	4.4.6 Executing PCROP-ed IP-Code
	4.4.7 Creating header file and generating symbol definition file
	Figure 16. Generating symbol definition file with IAR
	Figure 17. Generating symbol definition file with Keil®

	4.5 STEP2: ST Customer level n+1
	4.5.1 Creating an end user project
	Table 4. Preprogrammed STM32F429ZIT internal Flash memory map

	4.5.2 Including header file and adding symbol definition file
	Figure 18. Adding symbol definition file to Keil® project
	Figure 19. Setting symbol definition file type to Object file
	Figure 20. Adding symbol definition file to IAR project

	4.5.3 Calling PCROP-ed IP-Code functions
	4.5.4 Step2-ST_Customer_level_n+1 project flow
	Figure 21. Step1-ST_Customer_level_n+1 project flow

	4.5.5 Running the end user application
	4.5.6 PCROP protection in debug mode
	Figure 22. PCROP-ed IP-Code Assembly reading
	Figure 23. Filling PCROP-ed sector starting address
	Figure 24. PCROP-ed IP-Code Assembly reading

	5 Conclusion
	6 Revision history
	Table 5. Document revision history

