
Introduction
This application note describes the use of the MDMA (master direct memory access) controller available in STM32H7 Series
microcontrollers. The features of the MDMA controller, the STM32H7 system architecture, and the associated memory system
contribute to the freeing up of CPU resources.

The MDMA optimizes the data transfer bandwidth and off-loads some basic data management operations from the CPU.

As a system controller, the MDMA is mainly used to manage direct data transfers between RAM data buffers without CPU
intervention. It can also be used in a hierarchical structure that uses STM32 standard DMAs (DMA1 and DMA2) as first level
data buffer interfaces for AHB peripherals, while the MDMA acts as a second level DMA with more advanced features, such as
non-contiguous data increment, data packing, and data formatting.

This document focuses on all the features that are not available in other DMAs and provides the user with a good understanding
of use cases where using the MDMA is advantageous.

This application note is provided together with the X-CUBE-MDMA Expansion Package. It details specific aspects of the MDMA
by means of a use case walkthrough in order to allow developers to take full advantage of MDMA benefits with respect to a
DMA-based solution. It presents a suitable implementation of different peripherals and subsystems.

Reference documents and firmware

The following documents and packages are available on www.st.com:
• STM32H745/755 and STM32H747/757 advanced Arm®-based 32-bit MCUs (RM0399)
• STM32H742, STM32H743/753 and STM32H750 Value line advanced Arm®-based 32-bit MCUs (RM0433)
• STM32H7A3/7B3 and STM32H7B0 Value line advanced Arm®-based 32-bit MCUs (RM0455)
• STM32H723/733, STM32H725/735 and STM32H730 Value line advanced Arm®-based 32-bit MCUs (RM0468)
• Using the STM32F2, STM32F4 and STM32F7 Series DMA controller (AN4031)
• STM32Cube MCU Package for STM32H7 Series with HAL and dedicated middleware (STM32CubeH7)
• Data transfer efficiency using MDMA software expansion for STM32Cube (X-CUBE-MDMA)

STM32Cube Expansion Package for STM32H7 Series MDMA

AN5001

Application note

AN5001 - Rev 3 - July 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://www.st.com/en/product/x-cube-mdma?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001
https://www.st.com
https://www.st.com/resource/en/reference_manual/dm00176879.pdf
https://www.st.com/resource/en/reference_manual/dm00314099.pdf
https://www.st.com/resource/en/reference_manual/dm00463927.pdf
https://www.st.com/resource/en/reference_manual/dm00603761.pdf
https://www.st.com/resource/en/application_note/dm00046011.pdf
https://www.st.com/en/product/stm32cubeh7?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001
https://www.st.com/en/product/x-cube-mdma?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001

1 MDMA features

This chapter introduces the position of the MDMA in the global STM32H7 bus architecture and presents the
MDMA specific functions that differentiate the MDMA controller from the DMA1 and DMA2 controllers.
This chapter is not intended to describe all registers. Refer to reference manuals STM32H745/755 and
STM32H747/757 advanced Arm®-based 32-bit MCUs (RM0399), STM32H742, STM32H743/753 and
STM32H750 Value line advanced Arm®-based 32-bit MCUs (RM0433), STM32H7A3/7B3 and STM32H7B0 Value
line advanced Arm®-based 32-bit MCUs (RM0455) and STM32H723/733, STM32H725/735 and STM32H730
Value line advanced Arm®-based 32-bit MCUs (RM0468) for details.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5001
MDMA features

AN5001 - Rev 3 page 2/16

https://www.st.com/resource/en/reference_manual/dm00176879.pdf
https://www.st.com/resource/en/reference_manual/dm00314099.pdf
https://www.st.com/resource/en/reference_manual/dm00463927.pdf
https://www.st.com/resource/en/reference_manual/dm00603761.pdf

1.1 The MDMA can interact with other masters without CPU intervention

The MDMA controller performs direct memory transfer. Like any other AXI/AHB master, it can take control of the
AXI/AHB bus matrix to initiate AXI/AHB transactions. Figure 1 shows all the masters connected to the AXI/AHB
matrix for the STM32H74xxx and STM32H75xxx microcontrollers.

Figure 1. Master connections of the AHB/AXI matrix for STM32H74xxx and STM32H75xxx
AX

IMART SDMMC1 MDMA DMA2D LTDC

Cortex-M7

I$
16KB

D$
16KB

AHBP

APB3

64-bit AXI bus matrix
D1 domain

DTCM
128 Kbytes

ITCM
64 Kbytes

Flash A
Up to 1 Mbyte

Flash B
Up to 1 Mbyte

AXI SRAM
512 Kbytes

QSPI

FMC

AHBS

CPU

D2-to-D1 AHB

D1-to-D2 AHB

D1-to-D3 AHB

32-bit bus
64-bit bus
Bus multiplexer

Legend

Master interface

Slave interface

AHB3

AXI
AHB

APB
TCM

AN5001
The MDMA can interact with other masters without CPU intervention

AN5001 - Rev 3 page 3/16

Figure 2 shows all the masters connected to the AXI/AHB matrix for the STM32H7Axxx and STM32H7Bxxx
microcontrollers.

Figure 2. Master connections of the AHB/AXI matrix for STM32H7Axxx and STM32H7Bxxx
AX

IM

SDMMC1 MDMA DMA2D LTDC

Cortex-M7
I$

16KB
D$

16KB

AHBP

APB3

64-bit AXI bus matrix
CD domain

DTCM
128 Kbytes

ITCM
64 Kbytes

Flash Bank 1
up to 1 Mbyte

FMC

AHBS

CPU

AXI to AHB

CD-to-SRD AHB

32-bit bus
64-bit bus
Bus multiplexer

Legend

Master interface

Slave interface

AHB3

AXI
AHB

APB
TCM

AXI SRAM3
384 Kbytes

AXI SRAM2
384 Kbytes

AXI SRAM1
256 Kbytes

OTFDEC1 OCTOSPI1

FLIFT

GFX-MMU

OTFDEC2 OCTOSPI2

Flash Bank 2
up to 1 Mbyte

AHB to AXI

Note: All the masters shown in Figure 1 and Figure 2 can activate the MDMA.

AN5001
The MDMA can interact with other masters without CPU intervention

AN5001 - Rev 3 page 4/16

The figure below shows all the masters connected to the AXI/AHB matrix for the STM32H72xxx and
STM32H73xxx microcontrollers.

Figure 3. Master connections of the AHB/AXI matrix for STM32H72xxx and STM32H73xxx

AX
IM

SDMMC1 MDMA DMA2D LTDC

Cortex-M7

I$
32KB

D$
32KB

AHBP

APB3

64-bit AXI bus matrix
D1 domain

DTCM
128 Kbytes

ITCM
64 Kbytes

Flash A
Up to 1 Mbyte

AXI SRAM
192 Kbytes

AXI SRAM
128 Kbyte

OTFDEC2

FMC

AHBS

CPU

D2-to-D1 AHB

D1-to-D2 AHB

D1-to-D3 AHB

32-bit bus
64-bit bus
Bus multiplexer

Legend

Master interface

Slave interface

AHB3

AXI
AHB

APB
TCM

ITCM
192 Kbytes

OR

OCTOSPI2

OTFDEC1 OCTOSPI1

AN5001
The MDMA can interact with other masters without CPU intervention

AN5001 - Rev 3 page 5/16

1.2 The MDMA can be triggered by peripherals such as DMA1 and DMA2

In the D1 domain (STM32H72/73/74/75xxx) or CD domain (STM32H7Axxx and STM32H7Bxxx), the MDMA
allows the transfer of memory data. It can be triggered by software or hardware. Furthermore it has direct
connections with DMA1 and DMA2. This enables autonomous communication and synchronization between
peripherals, thus saving CPU resources and power consumption. Each transmit complete flag (tcf) is linked to an
MDMA stream (str). Table 1 presents the mapping of MDMA steams on DMA transmit flags for the D1 or CD
domain.

Table 1. MDMA interconnection table with DMA1 and DMA2

Domain source Bus Peripheral DMA transmit signal MDMA stream signal TSEL value

D2(1) or CD(2) AHB1

DMA1

dma1_tcf0 mdma_str0 0x00

dma1_tcf1 mdma_str1 0x01

dma1_tcf2 mdma_str2 0x02

dma1_tcf3 mdma_str3 0x03

dma1_tcf4 mdma_str4 0x04

dma1_tcf5 mdma_str5 0x05

dma1_tcf6 mdma_str6 0x06

dma1_tcf7 mdma_str7 0x07

DMA2

dma2_tcf0 mdma_str8 0x08

dma2_tcf1 mdma_str9 0x09

dma2_tcf2 mdma_str10 0x0A

dma2_tcf3 mdma_str11 0x0B

dma2_tcf4 mdma_str12 0x0C

dma2_tcf5 mdma_str13 0x0D

dma2_tcf6 mdma_str14 0x0E

dma2_tcf7 mdma_str15 0x0F

1. D2 for STM32H72/73/74/75xxx MCUs.
2. CD for STM32H7Axxx and STM32H7Bxxx MCUs.

DMA1 and DMA 2 work like other DMAs in similar products. A detailed description is available in application note
Using the STM32F2, STM32F4 and STM32F7 Series DMA controller (AN4031).
Bit field TSEL[5:0] (Trigger SELection) in the trigger and bus selection register is used to program the hardware
trigger (one stream for each MDMA channel). Bit field selects the hardware trigger (RQ) input for channel x. The
acknowledge is sent on the ACK output having the same index value. The bits in this bit field are write-protected
and can be written only when bit EN = 0 in the MDMA_CxCR register. The transfer is triggered by software writing
1 to the SWRQ (software request). When the SWRM bit is set (software request mode), this bit field is ignored.

Note: If multiple channels are triggered by the same event (meaning that they have the same TSEL value), all of them
are triggered in parallel. However, only the channel with the lowest index acknowledges the request.
A write of the MDR (mask data register) value is also done at the address programmed in the MAR (mask
address register). This allows the clean out of the RQ signal generated by the DMA by writing to its Interrupt Clear
register.

AN5001
The MDMA can be triggered by peripherals such as DMA1 and DMA2

AN5001 - Rev 3 page 6/16

https://www.st.com/resource/en/application_note/dm00046011.pdf

A sequence with a hardware trigger from the DMA can be described as a sequence composed of the following
steps:
1. Configure DMA for a peripheral (such as USART1) to memory transfer
2. Configure MDMA to be hardware triggered by configuring TSEL
3. Configure MAR and MDR

a. In MAR, put the address of the DMA flag clear register
b. In the MDR, put a value that corresponds to the flag to clear

4. Start the data transfer to the memory accessible by DMA1 (AHB SRAM)
5. Make the peripheral receive a data
6. The MDMA is triggered at the end of the transfer
7. The DMA transmit complete flag is automatically cleared by using MAR and MDR
8. Data transfer from memory (AHB SRAM) to memory only accessible by MDMA such as DTCM-RAM

1.3 Dynamic configuration

With the MDMA, both the source and destination transfers can address peripherals and memories in the entire 4-
GByte area, at addresses comprised between 0x0000 0000 and 0xFFFF FFFF.
The MDMA can have access to the whole memory map. This allows the dynamic change of the configuration of
peripherals such as I2C or USART. DMA1 and DMA2 can be configured as well with a memory-to-memory
transfer. All needed configurations can be placed in the RAM and then transferred without CPU intervention to the
peripherals. It can occur after a trigger for example as presented in Section 1.2 The MDMA can be triggered by
peripherals such as DMA1 and DMA2.

1.4 Block transfer and block repeat features

When the MDMA is triggered by hardware or software, it can trigger different kinds of transfer, which are called
buffer transfer, block transfer, repeat block transfer, or whole data transfer.
This feature is set with the trigger mode (TRGM[1:0]) bit field located in the MDMA_CxTCR register (Transfer
Configuration register of MDMA channel x).
Up to 64 Kbytes can be transferred with a single block. The size of this block is set in the block number of data
bytes to transfer (BNDT[16:0]) located in the MDMA Channel x block number of data register
(MDMA_CxBNDTR).
The number of blocks to be transferred is loaded in the block repeat count (BRC[11:0]) bit field located in the
MDMA Channel x block number of data register (MDMA_CxBNDTR). Up to 4096 blocks can be sent. This field is
decremented after each complete block transfer.
Also the source address register (MDMA_CxSAR) and destination address register (MDMA_CxDAR) are updated
according to the block repeat source/destination mode (BRSUM/BRDUM) by adding or substracting the
MDMA_CxSAR and MDMA_CxDAR respectively with the source address update value (SUV[15:0]) and the
destination address value (DUV[15:0]), both located in the MDMA channel x Block Repeat address Update
register (MDMA_CxBRUR).
When the block repeat count reaches 0, it means that the last block (or single block in case of non-repeat block
transfer) is transferred.

1.5 Linked-list mode

A linked list is a linear collection of data elements, called nodes, each pointing to the next node by means of a
pointer. The address of this pointer is stored in the CxLAR (Channel x Link Address Register). The structure
pointed by this address must contain the ten MDMA configuration register values (CxTCR, CxBNDTR, CxSAR,
CxDAR, CxBRUR, CxLAR, CxTBR, CxMAR and CxMDR) to be reloaded.

Note: CxLAR is reloaded as well to link to another node if its value is not 0. Otherwise, no register update is taking
place. This mechanism occurs at the end of a (repeated) block transfer.
The linked-list mode allows the upload of a new MDMA configuration from the address given in the CxLAR
register. This address must refer to a memory mapped on the AXI system bus.
Following this operation, the channel is ready to accept new requests, as defined in the block/repeated-block
modes previously described, or continue the transfer if TRGM = 11.

AN5001
Dynamic configuration

AN5001 - Rev 3 page 7/16

Caution: The TRGM and SWRM values must not be changed when TRGM = 11.
A single request initiates the data array (collection of nodes) to be transferred until the linked-list pointer for the
channel is null. The channel transfer complete of the last node is the end of transfer, unless both nodes are linked
to each other; in such a case, the linked-list loops on to create a circular MDMA transfer.
The block size value is the length of the data block, which is described in a block structure of the MDMA linked
list. It corresponds to one entry in the linked list.
Each channel can perform a linked-list transfer. When the transfer of the current data block (or last block in a
repeat mode) is completed, a new block control structure is loaded from memory and a new block transfer is
started.
It is a single block or the last block in a repeated block transfer: the next block information is loaded from the
memory (using the linked-list address information, from the MDMA_CxLAR).
By setting the CTCIFx bit in the status register, and when the MDMA_CxBNDTR counter reaches zero, the block
repeat counter is 0 and the linked-list pointer address is 0, and nn end of transfer is generated.

1.6 Up to 256 Mbytes per DMA request

The minimum amount of data to be transferred for each request (buffer size up to 128 bytes) is programmable.
The total amount of data in a block is programmable up to 64 Kbytes and 4096 blocks (12-bit field):4096 × 64Kbytes = 256Mbytes
The use of the block repeat features allows a 256-Mbyte transfer.
For larger transfer sizes, the linked-list mechanism must be used as described in Section 1.5 Linked-list mode.

1.7 Non-contiguous data increment

When the step configured (half-word, word or double-word) is bigger than the data size transfer (byte, half-word or
word), a non-contiguous data increment or decrement is obtained.
If the increment or decrement mode is enabled, the address of the next data transfer is the address of the
previous one incremented or decremented by 1, 2, 4, or 8 depending on the increment size.
The increment or decrement step must at least be equal to the size of the data, which can be byte (8 bits), half-
word (16 bits), word (32 bits), or double-word (64 bits) long.

Caution: If the increment mode is enabled and if the increment size is strictly inferior to the data size, the result is
unpredictable. This applies to both the source and destination.
The source increment mode SINC[1:0], the destination increment mode DINC[1:0], the source increment size
SINCOS[1:0], the destination increment size DINCOS[1:0], the source data size SSIZE[1:0] and the destination
data size DSIZE[1:0] are all set by means of the the MDMA channel x Transfer Configuration register
(MDMA_CxTCR).
A noncontiguous data increment occurs if the increment mode is enabled and if the increment size is strictly
superior to the data size. For instance, if the size is programmed to be a byte and if the increment is programmed
to be a word, then the bytes after the first one are transferred with a step of 4.

Note: Based on this separation, some more advanced packing and unpacking operations are available at software
level. For instance, 2 × 16-bit data blocks may be interleaved together using two MDMA channels, in the
destination memory, by simply programming the 2 channels with an increment step of 4 bytes and a data size of
16 bits together with a start address shifted by 2 between the two channels.

1.8 Data packing

Section 1.7 Non-contiguous data increment details the configuration of non-contiguous data steps. Furthermore,
when source and destination data widths differ, the MDMA can pack and unpack the necessary data to optimize
the bandwidth.
When the packing / unpacking feature is enabled with PKE (PacK Enable) in the MDMA_CxTCR (MDMA channel
x Transfer Configuration Register), the source data is packed / unpacked into the destination data size. All data
are right aligned, in little endian mode.
Data packing / unpacking is always done according to the little endian convention: the lower address in a data
entity (double-word, word or half-word) always contains the lowest significant byte. This is independent of the
address increment / decrement mode of both source and destination.

AN5001
Up to 256 Mbytes per DMA request

AN5001 - Rev 3 page 8/16

When the packing / unpacking feature is disabled and when the source size is the same as the destination size,
the source data is written to the destination as is. If the sizes are not the same, two cases can occur:
• The source data size is smaller than the destination data size: source data are padded with zeros on the

right or on the left according to the PAM (Padding/Alignement Mode) value with the sign extended or not.
• The source data size is larger than the destination data size: source data are truncated. The alignment is

done according to the PAM[1] value. If right aligned, only the LSBs part of the source is written to the
destination address. Otherwise, if left aligned, only the MSBs part of the source is written to the destination
address. In both cases, the remainder part is discarded.

1.9 Little-endian and big-endian data format are supported

When an MDMA transfer occurs, it is possible to exchange the endianness of the data for double-word, word, or
half-word data size. By default little endianness is preserved.
The Word Endianness eXchange (WEX) bit, the Half-word Endianness eXchange (HEX) bit, and the Byte
Endianness eXchange (BEX) bit are located in the MDMA channel x control register (MDMA_CxCR).
When a data is exchanged, the higher address of the destination contains the data read from the lower address of
the source.
The WEX is used to exchange words and is applicable to a destination with a double-word data size.
The HEX is used to exchange half word in each words and is applicable to word or double word.
The BEX is used to exchange byte in each half words and is applicable to half word, word or double word.
To obtain the big endianness, WEX, HEX, and BEX must be used simultaneously to completely reverse the byte
order.

AN5001
Little-endian and big-endian data format are supported

AN5001 - Rev 3 page 9/16

2 MDMA with USART, JPEG, and external RAM use cases

The demonstration examples provided in the X-CUBE-MDMA Expansion Package are developed for the
STM32H743XI microcontroller on the STM32H743I-EVAL Evaluation board. They can easily be tailored for any
other microcontroller in the STM32H7 Series.
In this chapter, the MDMA is used in conjunction with other masters and peripherals such as DMAs and JPEG to
demonstrate how efficiently it can free CPU resources.
As an example, a JPEG image is sent with a USART and displayed on the screen of the STM32H743I-EVAL
Evaluation board. Then, the joystick is used to move the image being displayed. The block diagram in Figure 4
provides an overview of the use case.

Figure 4. JPEG image use case block diagram

MDMA
JPEG codec
+
MDMA

DMA2D

YCbCr
image

transferred
in

external
SRAM

ARGB
image

in
external
memory

(LCD buffer)

USART
+
DMA

JPEG
image
in the

computer

MDMA

JPEG
image

transferred
 in

AXI RAM

JPEG
image
portion

transferred
in SRAM1

This use case is coded using the MCU Package for STM32H7 Series (STM32CubeH7) that can be dowloaded
from www.st.com. It contains other useful MDMA examples.

2.1 MDMA with USART

With a hardware trigger from the DMA1 stream, the data go from USART1 to a buffer in AHB SRAM1 (D2
domain) and then to the AXI SRAM by means of the MDMA to be decoded with the JPEG codec. The buffer in
SRAM1 is one-byte sized, and the USART is in circular mode, so the MDMA buffer transmission is used.
When a block is received (65536-byte size maximum), the external memory is no more filled. This is a non-repeat
block transmission.

2.2 MDMA with JPEG

Once the AXI SRAM is filled, the JPEG codec is enabled. Then, the JPEG input buffer triggers MDMA
transmission to send the JPEG file to the JPEG input buffer by means of the JPEG input FIFO not-full trigger. The
JPEG output buffer triggers MDMA transmission as well to send the decoded data in YCbCr format to the external
memory on the STM32H743I-EVAL board. Both JPEG input buffer and JPEG output buffer are 8-byte long.
YCbCr data are processed to ARGB by DMA2D (external memory to external memory) in order to be displayed
on the screen.

2.3 MDMA with external SDRAM

In order to move the image on the LCD, it is displayed and managed by MDMA as a regular memory-to-memory
word copy. The start address of the SDRAM is configured in the LCD-TFT display controller and hardware
decoded with the flexible memory controller (FMC).
Each line is composed of pixels. Each pixel is 4 bytes in this case. Lines are not contiguous in the memory area.
For this reason, a line is a block and there is an offset to go to the next line. A 320 × 240 regular image represents
240 blocks, each block being composed of 320 words. The first pixel of the screen (top-left corner) corresponds to
the start address (the lowest address value) of the external memory. The screen has a resolution of 640 × 480
allowing the image to be moved inside the entire screen.

AN5001
MDMA with USART, JPEG, and external RAM use cases

AN5001 - Rev 3 page 10/16

https://www.st.com/en/product/x-cube-mdma?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001
https://www.st.com/en/product/stm32h743xi?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001
https://www.st.com/en/product/stm32h743i-eval?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://www.st.com/en/product/stm32h743i-eval?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001
https://www.st.com/en/product/stm32cubeh7?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5001
https://www.st.com

Upward move

To move the image upwards vertically, the process starts from the beginning of the image (its first pixel in the top-
left image corner) and then increments the MDMA counter. The destination address is chosen slightly lower than
the start address. The offset is a multiple of 640 in order to be vertically aligned. Therefore, the first block which
corresponds to the first line is printed a few pixels higher. Then the block counter is incremented and the process
is repeated line by line for the next lines in the entire image. The result obtained is that the image is slightly shifted
upwards. In addition, some margin is taken to erase the previous image.

Downward move

To move the image downwards vertically, the process starts from the end of the image (its last pixel in the bottom-
right image corner) and then decrements the MDMA counter. The destination address is chosen slightly higher
than the start address. The offset is a multiple of 640 in order to be vertically aligned. Therefore, the first block
which corresponds to the last line is printed a few pixels lower. Then the block counter is decremented and the
process is repeated line by line for the previous lines in the entire image. The result obtained is that the image is
slightly shifted downwards. Similarly, some margin is also taken to erase the previous image.

Left or right move

To move the image left or right horizontally is more complex. 240 blocks or slightly more are handled by the
MDMA with a four-word size instead of 320. The destination address is chosen on the same line as the source to
be horizontally aligned. 60 more runs complete the image.

AN5001
MDMA with external SDRAM

AN5001 - Rev 3 page 11/16

Revision history

Table 2. Document revision history

Date Version Changes

21-Jun-2017 1 Initial release.

29-Jan-2020 2

Document scope extended to the STM32H7Axxx and STM32H7Bxxx
microcontrollers:
• Title updated
• Updated Introduction, MDMA features, and The MDMA can be triggered

by peripherals such as DMA1 and DMA2
• Added Figure 2. Master connections of the AHB/AXI matrix for

STM32H7Axxx and STM32H7Bxxx

17-Jul-2020 3

Document scope extended to the STM32H72xxx and STM32H73xxx
microcontrollers. Updated:
• Introduction
• New Figure 3. Master connections of the AHB/AXI matrix for

STM32H72xxx and STM32H73xxx
• Section 1.2 The MDMA can be triggered by peripherals such as DMA1

and DMA2

AN5001

AN5001 - Rev 3 page 12/16

Contents

1 MDMA features .2

1.1 The MDMA can interact with other masters without CPU intervention 3

1.2 The MDMA can be triggered by peripherals such as DMA1 and DMA2. 6

1.3 Dynamic configuration . 7

1.4 Block transfer and block repeat features . 7

1.5 Linked-list mode . 7

1.6 Up to 256 Mbytes per DMA request . 8

1.7 Non-contiguous data increment. 8

1.8 Data packing . 8

1.9 Little-endian and big-endian data format are supported. 9

2 MDMA with USART, JPEG, and external RAM use cases .10

2.1 MDMA with USART. 10

2.2 MDMA with JPEG . 10

2.3 MDMA with external SDRAM. 10

Revision history .12

Contents .13

List of tables .14

List of figures. .15

AN5001
Contents

AN5001 - Rev 3 page 13/16

List of tables
Table 1. MDMA interconnection table with DMA1 and DMA2 . 6
Table 2. Document revision history . 12

AN5001
List of tables

AN5001 - Rev 3 page 14/16

List of figures
Figure 1. Master connections of the AHB/AXI matrix for STM32H74xxx and STM32H75xxx . 3
Figure 2. Master connections of the AHB/AXI matrix for STM32H7Axxx and STM32H7Bxxx . 4
Figure 3. Master connections of the AHB/AXI matrix for STM32H72xxx and STM32H73xxx . 5
Figure 4. JPEG image use case block diagram . 10

AN5001
List of figures

AN5001 - Rev 3 page 15/16

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

AN5001

AN5001 - Rev 3 page 16/16

http://www.st.com/trademarks

	Introduction
	1 MDMA features
	1.1 The MDMA can interact with other masters without CPU intervention
	1.2 The MDMA can be triggered by peripherals such as DMA1 and DMA2
	1.3 Dynamic configuration
	1.4 Block transfer and block repeat features
	1.5 Linked-list mode
	1.6 Up to 256 Mbytes per DMA request
	1.7 Non-contiguous data increment
	1.8 Data packing
	1.9 Little-endian and big-endian data format are supported

	2 MDMA with USART, JPEG, and external RAM use cases
	2.1 MDMA with USART
	2.2 MDMA with JPEG
	2.3 MDMA with external SDRAM

	Revision history
	Contents
	List of tables
	List of figures

