
       
 

 

DT0106 
Design tip 

Residual linear acceleration by gravity subtraction 
to enable dead-reckoning 

   By Andrea Vitali 

Purpose and benefits 
This design tip explains how to compute the residual linear acceleration, both in terms of 
sensor body frame or in terms of world reference frame. The latter reference frame is 
needed to perform dead-reckoning based on double integration of the residual linear 
acceleration.  

Benefits: 

• Added functionality with respect to data fusion provided by MotionFX library. 

• Short implementation which enables easy customization and enhancement by the end-
user. Easy to use on every microcontroller. 

Scope 
This design tip applies to all accelerometers, eCompass modules, and iNemo inertial IMUs 
from STMicroelectronics. 

Residual linear acceleration in terms of the sensor body frame 
The gravity vector is rotated based on the estimated orientation of the sensor, then it is 
subtracted from the acceleration vector. Looking at Figure 1, the gravity vector is [0;0;1] 
(column vector). The code is then the following: 

linacc_body = -(acc – rotM*[0;0;1]) % gravity vector is rotated and subtracted 

The negative sign is due to the fact that the output of the accelerometer axis is positive 
when pointing down towards the gravity vector. As an example, the Z-axis is pointing down 
and a positive acceleration can be obtained by an upward motion along –Z.  
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Figure 1. Reference orientation for input data from accelerometer and magnetometer,  
and reference orientation for output data: roll, pitch and yaw angles 

 

The rotation matrix can be computed from the current orientation, expressed as quaternion 
or Euler angles, using one of the following functions: 

function M = quat2rotM(Q) 
  qw=Q(1); qx=Q(2); qy=Q(3); qz=Q(4); 
  qw2=qw*qw; qx2=qx*qx; qy2=qy*qy; qz2=qz*qz; 
  n=1/(qw2+qx2+qy2+qz2); 
  m11=( qx2 -qy2 -qz2 +qw2)*n; 
  m22=(-qx2 +qy2 -qz2 +qw2)*n; 
  m33=(-qx2 -qy2 +qz2 +qw2)*n; 
  t1=qx*qy; t2=qz*qw; m12=2*(t1+t2)*n; m21=2*(t1-t2)*n; 
  t1=qx*qz; t2=qy*qw; m13=2*(t1-t2)*n; m31=2*(t1+t2)*n; 
  t1=qy*qz; t2=qx*qw; m23=2*(t1+t2)*n; m32=2*(t1-t2)*n; 
  M=[m11 m12 m13; m21 m22 m23;m31 m32 m33]; 
end 
 
function M = euler2rotM(phi,theta,psi) 
  % North-East-Down reference frame 
  % Roll(phi) Pitch(theta) Yaw(psi), angles in radians 
  % Rx_phi = [1,0,0;0,cos(phi),sin(phi);0,-sin(phi),cos(phi)]; 
  % Ry_theta = [cos(theta),0,-sin(theta);0,1,0;sin(theta),0,cos(theta)]; 
  % Rz_psi = [cos(psi),sin(psi),0;-sin(psi),cos(psi),0;0,0,1]; 
  % M = Rx_phi * Ry_theta * Rz_psi; 
  m11= cos(theta)*cos(psi); 
  m12= cos(theta)*sin(psi); 
  m13=-sin(theta); 
  m21=sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi); 
  m22=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi); 
  m23=sin(phi)*cos(theta); 
  m31=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi); 
  m32=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi); 
  m33=cos(phi)*cos(theta); 
  M = [m11,m12,m13; m21,m22,m23; m31,m32,m33];  
end 
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Using the rotation matrix derived from the Euler angles and exploiting the fact that the 
gravity vector has two components out of three equal to zero, the following function can 
also be used: 

function linacc = acceuler2linacc(acc,phi,theta) 
  % North-East-Down reference frame 
  % Roll(phi) Pitch(theta) Yaw(psi), angles in radians 
  gx = -sin(theta); 
  gy = cos(theta).*sin(phi); 
  gz = cos(theta).*cos(phi); 
  g = [gx,gy,gz]; % rotated gravity vector 
  linacc = -(acc-g); % residual linear acceleration in sensor body coordinates 
  % '-' because acc>0 when axis pointing down to gravity 
end 

Using the quaternion, the rotation can also be expressed as the product of three elements: 
the conjugate quaternion, the pure quaternion corresponding to the gravity vector [0,0,0,1], 
and the quaternion itself. The following function can then be used: 

function linacc = accquat2linacc(acc,Q) 
  % [0,gx,gy,gz] = conj(q) * [0,0,0,1] * q, in NED reference frame 
  qw=Q(1); qx=Q(2); qy=Q(3); qz=Q(4); % quaternion 
  gx = 2*(qx*qz-qw*qy); 
  gy = 2*(qw*qx+qy*qz); 
  gz = qw*qw-qx*qx-qy*qy+qz*qz; 
  g = [gx,gy,gz]; % rotated gravity vector 
  linacc = -(acc-g); % residual linear acceleration in sensor body coordinates 
  % '-' because acc>0 when axis pointing down to gravity 
end 

Residual linear acceleration in terms of the world reference frame 
The acceleration vector is de-rotated based on the estimated orientation of the sensor, then 
the gravity vector is subtracted. Looking at Figure 1, the gravity vector is [0;0;1] (column 
vector). The code is then the following: 

linacc_world = -(rotM’ * acc - [0;0;1]) % the inverse of rotM is the transpose 

The negative sign is due to the fact that the output of the accelerometer axis is positive 
when pointing down towards the gravity vector. As an example, the Z-axis is pointing down 
and a positive acceleration can be obtained by an upward motion along –Z. 

The rotation matrix can be computed from the current orientation, expressed as quaternion 
or Euler angles, using one of the functions presented in the previous paragraph. 

The residual linear acceleration, in terms of the world reference frame, can also be 
computed by de-rotating the residual linear acceleration expressed in terms of the sensor 
body frame: 

linacc_world = (rotM’ * linacc_body) % the inverse of rotM is the transpose 

 



       
 

Dead-reckoning by double integration of world-referenced linear acceleration 
The device velocity can be obtained by a first integration of the residual linear acceleration 
in terms of the world reference frame. The device position can then be obtained by a 
second integration of the velocity. 

Care must be taken to eliminate any spurious offset in the residual linear acceleration. The 
error induced by the spurious offset will grow linearly with time after the first integration, 
and it will grow proportional to time squared after the second integration. 

The spurious offset can be caused by an imperfect calibration of the accelerometer, or by 
errors in the orientation estimation which in turn causes an imperfect subtraction of the 
gravity vector. 

The accelerometer can be calibrated using 6-tumble calibration (see Design Tip DT0053) 
or by using sphere/ellipsoid fitting (see Design Tip DT0059). The former technique does 
require the capability to precisely set the orientation of the device when the data point is 
taken, while the latter does only require that the device is not subject to linear accelerations 
when the data point is taken. 

When linear acceleration is present, the orientation should be estimated by exploiting the 
gyroscope (see Design Tip DT0060) and NOT by using the accelerometer data (see 
Design Tip DT0058). If a gyroscope is not present in the system, a virtual gyroscope can 
be emulated by exploiting the magnetometer (see Design Tip DT0104). 

In the simplest implementation, the integration error can be controlled by using a leaky  
integrator which is the same as using a high-pass filter to remove the continuous 
component and the low-frequency portion of the velocity and position. 

The reference code is listed below: acc is the Nx3 matrix holding the residual linear 
acceleration in world coordinates, Ts is the sampling interval in seconds, alpha is the leaky 
factor (usually set to 0.9-0.95). 

% residual linear acceleration must be in world reference frame 
function [poshp,velhp] = deadreckon_very_simple(acc,Ts,alpha) 
  velhp=acc; poshp=acc; % pre alloc for speed 
  acc=acc*9.81; % g->m/s 
  %c=(1+alpha)/2; % unity gain at high frequencies 
  %freqz([c -c],[1 -alpha],1024,Fs) % frequency response 
  c=1; % simpler implementation but high frequencies are amplified 
  for i=2:length(acc), 
    % 1st integration, lin acceleration -> velocity 
    velhp(i,:) = c*(acc(i,:)*Ts) + alpha*velhp(i-1,:); 
    % 2nd integration, velocity -> position 
    poshp(i,:) = c*(velhp(i,:)*Ts) + alpha*poshp(i-1,:); 
  end; 
end 

Another technique which can be of help in controlling the integration error is known as 
Zero-Velocity-Update (ZVU): when the modulus of the acceleration is 1g and the output of 
the gyroscope is near 0, then it is assumed that the velocity is zero, and the corresponding 
integrator is reset to 0. If all the conditions are met in the above code, this instruction is 
executed: velhp(i,:)=[0,0,0].  



       
 

It must be noted that a constant velocity would falsely trigger the ZVU reset. Then a 
constant velocity must be unlikely or impossible in the application of interest. 

If real-time processing is not a requirement, it is possible to smooth out the abrupt transition 
that can happen when a ZVU reset happens: the residual linear acceleration can be 
integrated backward from the current ZVU point to the previous ZVU point and the output of 
the backward integrator can be mixed with the output of the forward integrator.  

As an example, the weight W for the backward integrator output can linearly go from 1 
down to 0 when going from the current ZVU point to the previous ZVU point; then the 
weight for the forward integrator can simply be set to 1-W. 

Support material 
Related design support material 

BlueMicrosystem1, Bluetooth low energy and sensors software expansion for STM32Cube 

Open.MEMS, MotionFX, Real-time motion-sensor data fusion software expansion for STM32Cube 

Documentation 

Design Tip, DT0053, 6-point tumble sensor calibration 

Design Tip, DT0058, Computing tilt measurement and tilt-compensated e-compass 

Design Tip, DT0059, Ellipsoid or sphere fitting for sensor calibration 

Design Tip, DT0060, Exploiting the gyroscope to update tilt measure and e-compass 

Design Tip, DT0104, Exploiting the magnetometer as a virtual gyroscope at low and ultra-high spin 
rates 

Revision history 
Date Version Changes 

28-Aug-2018 1 Initial release 
 

 

 

 

 

 

 

 

 

 



       
 

 

 

  
IMPORTANT NOTICE – PLEASE READ CAREFULLY 

 

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, 
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should 
obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and 
conditions of sale in place at the time of order acknowledgement. 

 

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for 
application assistance or the design of Purchasers’ products. 

 

No license, express or implied, to any intellectual property right is granted by ST herein.  

 

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for 
such product. 

 

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. 
 

 

Information in this document supersedes and replaces information previously supplied in any prior versions of this document. 
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