ﬁ_ UM1642
” life.augmented User manual

Smart volume control library
software expansion for STM32Cube

Introduction

The Smart Volume control (SVC) library user manual describes the software interface and
requirements for integration of the module into a main program, like Audio STM32Cube
expansion software and provides a rough understanding of the underlying algorithm.

The SVC library is part of the X-CUBE-AUDIO firmware package.

January 2018 DocID24750 Rev 7 1/25

www.st.com

http://www.st.com

Contents UM1642

Contents
1 Module overview i i i s 6
1.1 Algorithm function 6
1.2 Module configuration 6
1.3 Resource summary 7
2 Module interfaces it i i 9
21 APIS 9
211 svc resetfunction 9
21.2 svc_setParamfunction 9
213 svc_getParam function 10
214 svc_setConfigfunction L 10
21.5 svc_getConfig function 11
216 svc_processfunction 11
2.2 External definitionsand types 11
2.21 Inputand outputbuffers 11
222 Returned errorvalues 12
2.3 Static parameters structure L. 13
24 Dynamic parameters structure 13
3 Algorithm description i i i e 15
3.1 Processing steps 15
3.2 Dataformats 15
3.3 Performance assessment 16
3.31 Compression gain 16
3.3.2 Total Harmonic Distortion (THD) 18
3.3.3 Amplitude statistics 19
4 System requirements and hardwaresetup 20
4.1 Recommendations foran optimalsetup 20
411 Module integrationexample L 20
4.1.2 Module integration summary 21
5 How to tune and run the application 23

2/25 DoclD24750 Rev 7 ‘Yl

UM1642 Contents

6 Revision history i i ittt e eennns 24

3

DoclD24750 Rev 7 3/25

List of tables UM1642

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.

4/25

RESOUICE SUMMAIY. . . . it e e e e et e e e e e e e 7
SVC TESEl . . 9
SVC_SetParam 10
SVC _getParam. 10
SVC _SetCONfig. o 10
SVC getCoNfig. o 11
SV _PIOCESS .« v v ottt et e e et e e e 11
Inputand output buffers e 12
Returned error values. e 12
Static parameters structure. 13
Dynamic parameters structure 14
Amplitude statistics. 19
Document revision history 24

3

DoclD24750 Rev 7

UM1642 List of figures

List of figures

Figure 1. Block diagramof SVC module e 15
Figure 2. SVC compression curve with 6 dB inputvolume 16
Figure 3. SVC compression curve with 20 dB inputvolume 17
Figure 4. SVCcompressioncurveand THD 18
Figure 5. Basic Audio Chain 20
Figure 6. APl call procedure e 21

3

DoclD24750 Rev 7 5/25

Module overview UM1642

1.1

1.2

6/25

Module overview

Algorithm function

The SVC module allows to digitally modify the volume of the input signal in the range of
[-80:+36] dB.

It is based on the dynamic range compressor function, which maps the amplitude range of
the audio signal to a smaller range: reducing the signal level of the higher peaks while
leaving the quieter parts untreated.

Module configuration

The SVC module supports mono, stereo and multichannel interleaved 16-bit and 32-bit I/O
data.

The SVC library is optimized for digital volume variations.

Several versions of the module are available depending on the 1/0 format, the Cortex Core

and the used tool chain:

e SVC_CM4_lAR.a/SVC_CM4_GCC.a/ SVC_CM4_Keil.lib: 16 bits mono/stereo and
multichannel input/output buffers, library runs on any STM32 microcontroller featuring a
core with Cortex®-M4 instruction set.

e SVC_32b_CM4_IAR.a/SVC_32b_CM4_GCC.a/SVC_32b_CM4_Keil.lib: 32 bits
mono/stereo and multichannel input/output buffers, library runs on any STM32
microcontroller featuring a core with Cortex®-M4 instruction set.

e SVC_CM7_lAR.a/SVC_CM7_GCC.a/ SVC_CM7_Keil.lib: 16 bits mono/stereo and
multichannel input/output buffers, library runs on any STM32 microcontroller featuring a
core with Cortex®-M7 instruction set.

e SVC_32b_CM7_IAR.a/SVC_32b_CM7_GCC.a/SVC_32b_CM7_Keil.lib: 32 bits
mono/stereo and multichannel input/output buffers, library runs on any STM32
microcontroller featuring a core with Cortex®-M7 instruction set.

3

DoclD24750 Rev 7

UM1642

Module overview

1.3 Resource summary
Table 1 contains the module requirements for the Flash, stack and RAM memories and the
frequency (MHz).
Those footprints are measured on board, using IAR Embedded Workbench for ARM v7.40
(IAR Embedded Workbench common components v7.2).
Table 1. Resource summary
Flash Flash data Persistent | Scratch Frequency
Version Use Case | Core code (.rodata) Stack RAM RAM (MHz)
(-text)
6276
M4 Bytes 10.7
High Quality
M7 ;220 7.9
16 bits 1/0 ytes
8 Bytes | 74 Bytes | 1368 Bytes | 2880 Bytes
stereo 6276
M4 5.9
Bytes
standard 8220
M7 Bytes 4
M4 6276 15.6
Bytes
High Quality
8220
16 bits 1/0 M7 | Bytes 10.6
multichannel 8 Bytes 74 Bytes | 1368 Bytes | 2880 Bytes
3.1 ma | 5276 9.9
Bytes
standard 2752
M7 Bytes 6.1
6152
M4 Bytes 10.9
High Quality
_ M7 ;;fezs 7.2
32 bits /O 8 Bytes | 74 Bytes | 2648 Btyes | 4800 Bytes
stereo 6152
M4 6.2
Bytes
standard >
775
M7 Bytes 34
6152
M4 Bytes 14.2
High Quality 2752
32 bits 1/0 M7 | Bytes 9.4
multichannel 8 Bytes | 74 Bytes | 2648 Btyes | 4800 Bytes
3.1 6152
: M4 8.3
Bytes
standard 7752
M7 Bytes 4.6
1S7 DoclD24750 Rev 7 7/25

Module overview UM1642

Note: The footprints on STM32F7 are measured on boards with stack and heap sections located
in DTCM memory.

Note: Scratch RAM is the memory that can be shared with other process running on the same
priority level. This memory is not used from one frame to another by SVC routines.

3

8/25 DoclD24750 Rev 7

UM1642

Module interfaces

2

Module interfaces

Two files are needed to integrate the SVC module. SVC_xxx_CMy_zzz.a/.lib library and the
svc_glo.h header file which contains all definitions and structures to be exported to the
software integration framework.

Note: The audio_fw_glo.h file is a generic header file common to all audio modules; it must be
included in the audio framework.
2.1 APls
Six generic functions have a software interface to the main program:
e svc _reset
e svc_setParam
e svc_getParam
e svc_setConfig
e svc_getConfig
e sSvC_process
211 svc_reset function
This procedure initializes the persistent memory of the SVC module and initializes the static
and dynamic parameters with default values.
API description:
int32_t svc_reset(void *persistent_mem_ptr, void *scratch_mem_ptr) ;
Table 2. svc_reset
110 Name Type Description
Input persistent_mem_ptr void * Pointer to internal persistent memory
Input scratch_mem_ptr void * Pointer to internal scratch memory
Returned value - int32_t Error value
Note: This routine must be called at least once at initialization time, when the real time processing
has not started.
21.2 svc_setParam function
This procedure writes module static parameters from the main framework to the module’s
internal memory. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters, i.e. the parameters with values which cannot
be changed during the module processing (frame after frame).
Note: Static parameters cannot be changed dynamically after the start of the module processing,

3

while dynamic parameters can be modified during processing (through svc_setConfig() API
described below).

API description:

DoclD24750 Rev 7 9/25

Module interfaces

UM1642

int32_t svc_setParam(svc_static_param_ t *input_static_param ptr, void
*persistent_mem_ptr) ;

Table 3. svc_setParam

110 Name Type Description
Input input_static_param_ptr svc_static_param_t * Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value
213 svc_getParam function
This procedure gets the module static parameters from the module internal memory to the
main framework. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters, that is the parameters with values which
cannot be changed during the module processing (frame after frame).
API description:
int32_t svc_getParam(svc_static_param_t *input_static_param_ptr, void
*persistent_mem_ptr) ;
Table 4. svc_getParam
110 Name Type Description
Input input_static_ param_ptr |svc_static param_t* Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Retumed - int32_t Error value
value -
214 svc_setConfig function
This procedure sets the module dynamic parameters from the main framework to the
module internal memory. It can be called at any time during processing (after reset and
setParam routines).
API description:
int32_t svc_setConfig(svce_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;
Table 5. svc_setConfig
110 Name Type Description
Input input_dynamic_param_ptr |svc_dynamic_param_t * Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value -
10/25 DoclD24750 Rev 7 Kys

UM1642 Module interfaces
21.5 svc_getConfig function
This procedure gets the module dynamic parameters from the internal persistent memory to
the main framework. It can be called at any time during the module processing (after reset
and setParam routines).
API description:
int32_t svc_getConfig(svce_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;
Table 6. svc_getConfig
110 Name Type Description
Input input_dynamic_param_ptr |svc_dynamic_param_t * Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned - int32_t Error value
value
21.6 svc_process function
This procedure is the main processing routine of the module. It should be called at any time,
to process each frame.
API description:
int32_t svc_process (buffer_t *input_buffer, buffer_t *output_buffer, void
*persistent_mem_ptr) ;
Table 7. svc_process
110 Name Type Description
Input input_buffer buffer_t * Pointer to input buffer structure
Output output_buffer buffer_t * Pointer to output buffer structure
Input persistent_mem_ptr |void * Pointer to internal persistent memory
Returned - int32_t Error value
value -
Note: This process routine can run in place; the input_buffer and the output _buffer addresses can
be the same.
2.2 External definitions and types
For genericity reasons and to facilitate the integration in main frameworks, some types and
definitions are adopted.
2.21 Input and output buffers

3

The SVC library is using extended I/O buffers which contain, in addition to the samples,
some useful information on the stream such as the number of channels, the number of
bytes per sample and the interleaving mode.

DoclD24750 Rev 7 11/25

Module interfaces UM1642

An 1/O buffer structure type, as described below, must be respected each time before calling
the processing routine; else, errors will be returned:

typedef struct {

int32_t nb_channels;
int32_t nb_bytes_per_Sample;
void *data_ptr;
int32_t buffer_ size;
int32_t mode;
} buffer_t;

Table 8. Input and output buffers

Name Type Description

nb_channels int32_t | Number of channels in data: 1 for mono, 2 for stereo, 4 for 3.1 multichannel,...

nb_bytes per_Sample |int32_t | Dynamic of data in number of bytes (16-bit = 2, 32-bit = 4)

data_ptr void * | Pointer to data buffer (must be allocated by the main framework)
buffer_size int32_t | Number of samples per channel in the data buffer

. In case of stereo stream, left and right channels can be interleaved.
mode int32_t

0 = not interleaved, 1 = interleaved.

2.2.2 Returned error values

Table 9 describes possible returned error values.

Table 9. Returned error values

Definition Value Description
SVC_ERROR_NONE 0 | Ok - No error detected
SVC_UNSUPPORTED_DELAY_LENGTH -1 | Delay length is not supported
SVC_UNSUPPORTED_VOLUME -2 | Volume setting is outside [-80;36] dB range
SVC_UNSUPPORTED_MUTE_MODE -3 | Mute value is not supported
SVC_UNSUPPORTED_QUALITY_MODE -4 | High quality value is not supported
SVC_UNSUPPORTED_JOINT_STEREO_MODE -5 | Joint stereo value is not supported
SVC_UNSUPPORTED_NUMBER_OF BYTEPERSAMPLE | -6]'cgfr:;?ata 's neither 16-bits nor 32-bits
SVC_BAD_HW -7 | Unsupported hardware for the library

3

12/25 DocID24750 Rev 7

UM1642

Module interfaces

2.3

24

3

Static parameters structure

There are some static parameter to be set before calling the process routine.
struct svc_static_param {

intl6_t delay_len;

intl6_t joint_stereo;
};

typedef struct svc_static_param svc_static_param_t;

Table 10. Static parameters structure

Name Type Description

delay_len int16_t Delay introduced in number of samples in the range [0:160]

joint_stereo int16_t 1 to enable joint_stereo, 0 to disable it

e "Delay_len" parameter represents the delay applied between the gain computed from
an input sample and this input sample.

For tuning, it is advised to smoothen the signal peaks and to use the following value:
delay_len = attack time * Fs * 2/3

e "Joint_stereo" parameter allows to apply the same amount of gain reduction to all the
channels: left, right, and possibly other channels in case of multichannel, in order to
preserve the stereo image of the input signal.

As it almost divides the MHz consumption of the algorithm by 2, it is highly
recommended to set it.

The default settings are:

e Delay len is set to 100 samples

e Joint_stereo is enabled.

Dynamic parameters structure

There are two dynamic parameters to be used.
struct svec_dynamic_param {

intlé6_t target_volume_dB;

intlé6_t mute;

intl6_t enable_compr;

int32_t attack_time;

int32_t release_time;

intl6_t quality;
};

typedef struct svc_dynamic_param svc_dynamic_param_t;

DoclD24750 Rev 7 13/25

Module interfaces UM1642

Table 11. Dynamic parameters structure

Name Type Description
target_volume_dB int16_t Volume dB input value, in 1/2 dB steps
mute int16_t 1 to enable mute, 0 to disable it
. 1 to enable compression, 0 to disable it. It is highly recommended to enable
enable_compr int16_t I, .
the compression to avoid saturation with positive gains.
attack_time int32_t Attack time coefficient in Q31 format
release time int32_t Release time coefficient in Q31 format
quality int16_t 1 to enable HIGH_Q mode, 0 to enable standard mode
High quality
This configuration computes the gain to apply for each input sample, and gives the best
possible results of the module. This has to be compared with the "Standard" version which
computes the gain to apply for a block of 16 input samples, considering their mean value.
The "Standard" configuration is less reactive and can increase the clipping samples
percentage as compared to the "High quality" configuration; but it consumes twice less
MHz.
Attack and release times
Conversion formula: Attack_time o, and release time og are the coefficients given as input
of the algorithm, in Q31 format, corresponding to the following formula:
o= (e(—1)/ (t- Fs) 231)
Where:
Fs = 48 kHz and 71 is the attack/release time in seconds.
Value Range: TN = 1 sample @Fs = 48 kHz = 0.02 ms (physical limit)
Tuax: there is no maximum limitation, whereas values exceeding tens of second do not
seem realistic. The implementation limit is 231 because the parameter is a 32-bit format.
The conversion between T and o must be done outside the algorithm, by the framework. o
and or must be given as "attack_time" and "release_time" inputs to the algorithm.

Note: Considering t range described above, oy and o should be in the following range:
[790015084:2147483647]. Anyway, a tuning interface would propose 1 to be set between
0.02ms and 5ms for the attack, and between 50ms and 300ms for the release times.

14/25 DoclD24750 Rev 7 Kys

UM1642 Algorithm description

3 Algorithm description

3.1 Processing steps

Figure 1. Block diagram of SVC module

“» Abs > Level dB Gain computer :A Lin
detector .

(attack_time)(release_time> <qua|ity enable_compD <Target_volume_d B>

MS32208V1

4
A 4

Abs block: computes the absolute value of the input signal.
Level detector block: smoothens the signal depending on attack and release times.
dB block: converts the signal to dB format.

Gain computer block: computes in real time the optimized compression curve depending
on the targeted volume.

Lin block: converts the signal back to the linear format.

3.2 Data formats

The SVC module supports fixed point mono, stereo and multichannel interleaved 16-bit and
32-bit input data.

It can work independently of the frame size and the signal input sampling rate.

However it is recommended to avoid selecting very short frame size (ie lower than 2 ms), in
order to prevent “plops” on transitions due to too short ramp up/down of the volume.

The module delivers output data following the same interleaved pattern and the 16-bits or
32-bits resolution, as the input data.

3

DoclD24750 Rev 7 15/25

Algorithm description

UM1642

3.3

3.3.1

Note:

16/25

Performance assessment

Compression gain

The compression gain curve design, which is calculated from the input volume, is an
essential part of the SVC module. Therefore, its real time computation must be very

accurate.

Find below the compression gain curve obtained with the Matlab model and with the SVC
module for 6 dB (see Figure 2) and 20 dB (see Figure 3) input volumes. The x-axis
represents the dB volume of the input sample, and the y-axis represents the dB volume
applied to the output sample and computed by the algorithm. You can notice two parts in the
red curve: a linear part for low volume inputs, and a compressed part for higher volume
inputs which is needed to prevent the output from clipping.

The blue curve noted "Input” represents the compression gain = 1, i.e. when output = input.

Figure 2. SVC compression curve with 6 dB input volume

Yolume Target BdB
I I I [I [I I
Compression Curve |+ ¢+ &+ S R]
— — 1 : : ' : : '

Qut (dBFS)

“Io0 &0 70 60 £l -40 -0 20 -0 0
In (dBFS)

3

DoclD24750 Rev 7

UM1642 Algorithm description

Figure 3. SVC compression curve with 20 dB input volume
“olume Target 20dB

Compression Curve | L L o o o C

— — 11

Qut (4BFS)

90 i
50 -80 70 60 A0 -40 30 20 -10 0
In (dBFS)

DoclD24750 Rev 7 17/25

3

Algorithm description

3.3.2

Note:

18/25

Total Harmonic Distortion (THD)

THD, Total Harmonic Distortion, is a measurement used to characterize the linearity of
audio systems.

When the input is a pure sine wave, the measurement is most commonly the ratio of the
sum of the powers of all harmonic frequencies to the power of the fundamental frequency:

=)

P2+P3+P4+.. . +P -2
THD= P1 T P1

As compressors are non-linear modules, it is useful to know which distortion the SVC
module can add to the signal.

In Figure 4, the blue curve represents the THD value measured for SVC with 36 dB input
gain. The THD increases as expected in the non-linearity part of the compression curve,
and especially when input > -12 dB. The green curve represents the compression gain of
the SVC with 36 dB input gain.

The value represented is THD +60 dB, thus a gain of 0 dB on the graph corresponds to
-60 dB.

Figure 4. SVC compression curve and THD

UM1642

SVC compression curve and THD

40 T T T
SVC 308
nput gain

THD + BOGE

gain (dB)

! n
| ||I| VM
|| ,' ||I |||.'|

40 “'Il i |’I' || .

| |‘ |I. |
=~ | |'| Vil g |
v o
| WATATL | L | T
-0 50 40 30 20 10 o

input (dBFS)

3

DoclD24750 Rev 7

UM1642

Algorithm description

3.3.3 Amplitude statistics
Amplitude statistics are important measures to evaluate the audio signal characteristics.
In order to assess the performance of the SVC implementation, several measures have
been identified: the number of clipped samples, the RMS power and the stereo image of
each channel.
Table 12 is an example of comparison between "Joint stereo" and "No Joint stereo” modes.
It also shows the differences between the "high quality" and "standard" configurations for
the same input gain = 36 dB.
The results shown in Table 12 are obtained with the same input file: "miossec" for several
input gains: 6, 12, 18, 24, and 36 dB.
You can observe that the RMS of the "Joint stereo" mode is lower than the "No joint stereo”
one. The difference depends on the input gain (from 0.1 to 1 dB). Consequently, the clipping
percentage is also lower for the "Joint stereo” mode.
Knowing that the input signal has a stereo image of 0.54 dB, the "Joint stereo" allows to
preserve the stereo image for all input gains, whereas "No joint stereo" does not.
Table 12. Amplitude statistics
No joint stereo Joint Stereo DIFE
_— o | o DIFF | 5% stereo
Input file Clipoed | C'iPPed Rcl’\}las Clipoed Clipped Rcl’\;las Clipped | pyg | Image Image
'Ppe samples IPPeC | samples samples No .
samples o Power | samples Power % Joint | Joint
% % (] oin
(dB) (dB)
Miossec_6dB_L 137 0.00809 | -11.01 93 0.00549 | -11.21 | 0.00256 | 0.2 - -
Miossec_6dB_R 125 0.00738 | -10.56 97 0.00573 | -10.67 | 0.00166 | 0.11 | 0.45 0.54
Miossec_12dB_L 922 0.05446 | -7.88 560 0.03308 | -8.46 | 0.02138 | 0.58 - -
Miossec_12dB_R 986 0.05824 | -7.6 693 0.04094 | -7.92 | 0.01731 | 0.32 | 0.28 0.54
Miossec_18dB_L | 4615 0.27259 | -6.12 2251 0.13296 | -6.94 | 0.13963 | 0.82 - -
Miossec_18dB_R| 5222 0.30844 | -5.96 3351 0.19793 -6.4 0.11051 | 0.44 | 0.16 0.54
Miossec_24dB_L | 13535 | 0.79945 | -5.11 5909 0.34902 | -6.07 | 0.45043 | 0.96 - -
Miossec_24dB_R | 14641 0.86478 | -5.02 9317 0.55031 | -5.53 | 0.31446 | 0.51 | 0.09 0.54
Miossec_30dB_L | 25898 | 1.52968 | -4.51 11066 | 0.65362 | -5.53 | 0.87606 | 1.02 - -
Miossec_30dB_R | 27374 | 1.61686 | -4.46 17561 1.03725 | -5.09 | 0.57961 | 0.63 | 0.05 0.44
Miossec_36dB_L | 40418 | 2.38731 | -4.08 17769 1.0495 -5.12 | 1.33777 | 1.04 - -
Miossec_36dB_R | 41836 | 2.47107 | -4.05 | 27608 1.6307 -4.6 |0.84038 | 0.55 | 0.03 0.52
Miossec_36dB
STANDARD_ L 109420 | 6.46295 | -3.1 87411 5.16298 -3.5 1.29997 | 04 - -
Miossec_36dB
STANDARD_R 102256 | 6.03980 | -3.21 111142 | 6.56466 | -3.07 |-0.52485|-0.14| -0.11 0.43

3

DoclD24750 Rev 7

19/25

System requirements and hardware setup UM1642

4 System requirements and hardware setup

SVC libraries are built to run either on a Cortex® M4 or on a Cortex® M7 core, without FPU
usage. They can be integrated and run on corresponding STM32F4/STM32L4 or STM32F7
family devices.

4.1 Recommendations for an optimal setup

The SVC library should be executed close to the audio DAC, at the end of the chain,
because of its non-linear effect on the signal.

Refer to Figure 5: Basic Audio Chain

Figure 5. Basic Audio Chain

Audio Post Processing

Mono or Stereo » s ling Rat > | [
Stream Audio Decoder ampling rate Other 3 SvC
Acquisition > conversion > Processing | Processing _(
1.0/2.0 1.0/2.0,
input 48 kHz
MSv38475V1
411 Module integration example

Cube expansion SVC integration examples are provided on STM32F746G-Discovery and
STM32F469I_Discovery boards. Please refer to provided integration code for more details.

3

20/25 DocID24750 Rev 7

UM1642

System requirements and hardware setup

4.1.2

Module integration summary

Figure 6. API call procedure

1

Memory allocation and
CRC enable and reset

v

svc_reset()

v

3

static_param initialization

!

4

svc_setParam()
5

svc_setConfig()
6 audio stream read

input_buffer preparation

7

svc_process()

A4

8

Audio stream write

New config
needed ?

svc_setConfig()

no

10

Memory freeing

MS32212v2

3

DoclD24750 Rev 7

21/25

System requirements and hardware setup UM1642

22/25

10.

As explained above, the SVC scratch and persistent memories have to be allocated, as
well as the input and output buffers. Also, SVC library must run on STM32 devices so
CRC HW block must be enable and reset.

Once the memory is allocated, the call to the svc_reset() function initializes the internal
variables and sets the default configuration to the module.

The module static configuration can now be set by initializing the static_param
structure.

Call the svc_setParam() routine to send static parameters from the audio framework to
the module.

Get dynamic parameters when they are updated, and call svc_setConfig() routine to
send dynamic parameters from the audio framework to the module.

The audio stream is read from the proper interface and input_buffer structure has to be
filled accordingly to the stream characteristics (number of channels, sample rate,
interleaving and data pointers). Output buffer structure has to be set as well.

Call the main processing routine to apply the effect.
The output audio stream can now be written in the proper interface.

If needed, the user can set new dynamic parameters and call the svc_setConfig()
routine again, to update the module configuration.

Once the processing loop is over, the allocated memory has to be freed.

3

DoclD24750 Rev 7

UM1642

How to tune and run the application

5

3

How to tune and run the application

Once the module is integrated into the audio framework to play samples at 48 kHz, just
launch the Audio player and choose a .WAV or .MP3 file with a 48 kHz sampling frequency if
there is no sampling rate conversion available.

The SVC "target_volume_dB" dynamic parameter represents the volume asked by the user,
in half dB steps. The volume change is applied smoothly to avoid audible artifacts.

The SVC "attack_time" dynamic parameter represents the time in ms, to decrease the gain,
when the input overshoots the threshold. The lowest the attack time is, the quickest the gain
will follow the input signal when the input signal amplitude increases.

The SVC "release_time"dynamic parameter represents the time in ms, to bring back the
gain to a normal value, once the signal falls below the threshold. The lowest the release
time is, the quickest the gain will follow the input signal when the input signal amplitude
decreases.

The SVC "enable_compr" dynamic parameter enables the effect when set to 1 or disables it
when set to 0.

The SVC "mute" dynamic parameter mutes the output when set to 1 or has no influence on
input signal when set to 0. When enabled, it allows mute the signal smoothly over a frame,
avoiding audible artifacts.

The SVC "quality" dynamic parameter, when enabled, allows to compute the gain for each
sample. On the contrary, when disabled, the gain is computed with an average over 16 input
samples, to reduce MHz consumption.

DoclD24750 Rev 7 23/25

Revision history

UM1642

6

24/25

Revision history

Table 13. Document revision history

Date

Revision

Changes

18-Jul-2013

1

Initial release.

08-Nov-2013

Added 32-bit I/O data and multichannel support.
Updated Section 1.2: Module configuration, Section 2.3:
Static parameters structure, Section 3.2: Data formats
and Section 3.3.1: Compression gain.

Updated Table 2: Resource summary.

Updated Figure 2: SVC compression curve with 6 dB
input volume and Figure 3: SVC compression curve with
20 dB input volume.

28-Nov-2014

Updated RPN on cover page

10-Dec-2014

Updated Section 4.2.2 and Section 5

24-Feb-2016

Updated:

— Introduction, Section 1.2, Section 2.1, Section 3.2,
Section 4.1, Section 5

— Table 1, Table 9, Table 10, Table 12
— Figure 4, Figure 6

Added:

— Figure 5

21-Mar-2017

Updated:

— Table 1: Resource summary, Table 2: svc_reset,
Table 3: svc_setParam, Table 4: svc_getParam,
Table 5: svc_setConfig, Table 6: svc_getConfig,
Table 7: svc_process, Table 8: Input and output
buffers, Table 11: Dynamic parameters structure,

— Section 1.2: Module configuration, Section 1.3:
Resource summary, Section 2: Module interfaces,
Section 2.1.1: svc_reset function, Section 2.1.3:
svc_getParam function, Section 2.1.4: svc_setConfig
function, Section 2.1.5: svc_getConfig function,
Section 2.1.6: svc_process function, Section 2.3:
Static parameters structure, Section 2.4: Dynamic
parameters structure, Section 4.1.1: Module
integration example, Section 4.1.2: Module integration
summary, Section 5: How to tune and run the
application

10-Jan-2018

Replaced X-CUBE-AUDIO-F4, X-CUBE-AUDIO-F7 and
X-CUBE-AUDIO-L4 with X-CUBE-AUDIO.

DoclD24750 Rev 7

3

UM1642

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

3

DoclD24750 Rev 7 25/25

	1 Module overview
	1.1 Algorithm function
	1.2 Module configuration
	1.3 Resource summary
	Table 1. Resource summary

	2 Module interfaces
	2.1 APIs
	2.1.1 svc_reset function
	Table 2. svc_reset

	2.1.2 svc_setParam function
	Table 3. svc_setParam

	2.1.3 svc_getParam function
	Table 4. svc_getParam

	2.1.4 svc_setConfig function
	Table 5. svc_setConfig

	2.1.5 svc_getConfig function
	Table 6. svc_getConfig

	2.1.6 svc_process function
	Table 7. svc_process

	2.2 External definitions and types
	2.2.1 Input and output buffers
	Table 8. Input and output buffers

	2.2.2 Returned error values
	Table 9. Returned error values

	2.3 Static parameters structure
	Table 10. Static parameters structure

	2.4 Dynamic parameters structure
	Table 11. Dynamic parameters structure

	3 Algorithm description
	3.1 Processing steps
	Figure 1. Block diagram of SVC module

	3.2 Data formats
	3.3 Performance assessment
	3.3.1 Compression gain
	Figure 2. SVC compression curve with 6 dB input volume
	Figure 3. SVC compression curve with 20 dB input volume

	3.3.2 Total Harmonic Distortion (THD)
	Figure 4. SVC compression curve and THD

	3.3.3 Amplitude statistics
	Table 12. Amplitude statistics

	4 System requirements and hardware setup
	4.1 Recommendations for an optimal setup
	Figure 5. Basic Audio Chain
	4.1.1 Module integration example
	4.1.2 Module integration summary
	Figure 6. API call procedure

	5 How to tune and run the application
	6 Revision history
	Table 13. Document revision history

